Acknowledgement
This project was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1F1A1076987 and NRF-2020M3F6A1109603)
References
- F. Zafari, A. Gkelias, and K. K. Leung, "A Survey of Indoor Localization Systems and Technologies," IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2568-2599, 2019, DOI: 10.1109/COMST.2019.2911558.
- S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A. Mouzakitis, "A Survey of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications," IEEE Internet of Things Journal, vol. 5, no. 2, pp. 829-846, 2018, DOI: 10.1109/JIOT.2018.2812300.
- X. Zhang, L. Wang, and Y. Su, "Visual place recognition: A survey from deep learning perspective." Pattern Recognition, vol. 113, May, 2021, DOI: 10.1016/j.patcog.2020.107760.
- R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, "NetVLAD: CNN architecture for weakly supervised place recognition," IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, DOI: 10.1109/CVPR.2016.572.
- G. Berton, C. Masone, and B. Caputo, "Rethinking Visual Geo-localization for Large-Scale Applications," IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, Jun., 2022, DOI: 10.1109/CVPR52688.2022.00483.
- A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pajdla, "24/7 place recognition by view synthesis," IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, DOI: 10.1109/CVPR.2015.7298790.
- J. Hyeon, J. Kim, and N. Doh, "Pose correction for highly accurate visual localization in large-scale indoor spaces," IEEE/CVF International Conference on Computer Vision, Montreal, Canada, Oct., 2021, DOI: 10.1109/ICCV48922.2021.01567.
- E. Ershov, A. Savchik, D. Shepelev, N. Banic, M. S. Brown, R. Timofte, K. Koscevic, M. Freeman, V. Tesalin, D. Bocharov, I. Semenkov, M. Subasic, S. Loncaric, A. Terekhin, S. Liu, C. Feng, H. Wang, R. Zhu, Y. Li, L. Lei, Z. Li, S. Yi, L. Han, R. Wu, X. Jin, C. Guo, F. Kinli, S. Mentes, B. Ozcan, F. Kirac, S. Zini, C. Rota, M. Buzzelli, S. Bianco, R. Schettini, W. Li, Y. Ma, T. Wang, R. Xu, F. Song, W. Chen, H. Yang, Z. Huang, H. Chang, S. Kuo, Z. Liang, S. Zhou, R. Feng, C. Li, X. Chen, B. Song, S. Zhang, L. Liu, Z. Wang, D. Ryu, H. Bae, T. Kwon, C. Desai, N. Akalwadi, A. Joshi, C. Mandi, S. Malagi, A. Uppin, S. S. Reddy, R. A. Tabib, U. Patil, and U. Mudenagudi, "NTIRE 2022 challenge on night photography rendering," IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, Jun., 2022, DOI: 10.1109/CVPRW56347.2022.00135.
- T. Naseer, W. Burgard, and C. Stachniss, "Robust Visual Localization Across Seasons," IEEE Transactions on Robotics, vol. 34, no. 2, pp. 289-302, Apr., 2018, DOI: 10.1109/TRO.2017.2788045.
- A. Anoosheh, T. Sattler, R. Timofte, M. Pollefeys, and L. V. Gool, "Night-to-Day Image Translation for Retrieval-based Localization," International Conference on Robotics and Automation, Montreal, Canada, May., 2019, DOI: 10.1109/ICRA.2019.8794387.
- V. Tsagaris and V. Anastassopoulos, "Fusion of visible and infrared imagery for night color vision," Displays, vol. 26, No. 4-5, pp. 191-196, Oct., 2005, DOI: 10.1016/j.displa.2005.06.007.
- D. Han, Y. Hwang, N. Kim, and Y. Choi, "Multispectral Domain Invariant Image for Retrieval-based Place Recognition," IEEE International Conference on Robotics and Automation, Paris, France, 2020, DOI: 10.1109/ICRA40945.2020.9197514.
- Y. Yuan, R. Fu, L. Huang, W. Lin, C. Zhang, X. Chen, and J. Wang, "Hrformer: High-resolution vision transformer for dense predict," Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021, [Online], https://proceedings.neurips.cc/paper/2021/hash/3bbfdde8842a5c44a0323518eec97cbe-Abstract.html.
- Y. Choi, N. Kim, S. Hwang, K. Park, J. Yoon, K. An, and I. Kweon, "KAIST Multi-Spectral Day/Night Data Set for Autonomous and Assisted Driving," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 3, pp. 934-948, Mar., 2018, DOI: 10.1109/TITS.2018.2791533.
- D. Hendrycks and T. Dietterich, "Benchmarking neural network robustness to common corruptions and perturbations," Machine Learning, 2019, DOI: 10.48550/arXiv.1903.12261.