DOI QR코드

DOI QR Code

Settlement Prediction Accuracy Analysis of Weighted Nonlinear Regression Hyperbolic Method According to the Weighting Method

가중치 부여 방법에 따른 가중 비선형 회귀 쌍곡선법의 침하 예측 정확도 분석

  • Kwak, Tae-Young (Geotechnical Engineering Research Division, Korea Institute of Construction Technology) ;
  • Woo, Sang-Inn (Dept. of Civil and Environmental Engineering, Incheon National Univ.) ;
  • Hong, Seongho (Dept. of Civil & Environmental Engineering, Seoul National Univ.) ;
  • Lee, Ju-Hyung (Geotechnical Engineering Research Division, Korea Institute of Construction Technology) ;
  • Baek, Sung-Ha (School of Civil and Environmental Engineering & Construction Engineering Research Institute, Hankyong National Univ.)
  • 곽태영 (한국건설기술연구원 지반연구본부 ) ;
  • 우상인 (인천대학교 도시환경공학부 ) ;
  • 홍성호 (서울대학교 건설환경공학부 ) ;
  • 이주형 (한국건설기술연구원 지반연구본부 ) ;
  • 백성하 (한경국립대학교 건설환경공학부 )
  • Received : 2023.03.16
  • Accepted : 2023.03.25
  • Published : 2023.04.30

Abstract

The settlement prediction during the design phase is primarily conducted using theoretical methods. However, measurement-based settlement prediction methods that predict future settlements based on measured settlement data over time are primarily used during construction due to accuracy issues. Among these methods, the hyperbolic method is commonly used. However, the existing hyperbolic method has accuracy issues and statistical limitations. Therefore, a weighted nonlinear regression hyperbolic method has been proposed. In this study, two weighting methods were applied to the weighted nonlinear regression hyperbolic method to compare and analyze the accuracy of settlement prediction. Measured settlement plate data from two sites located in Busan New Port were used. The settlement of the remaining sections was predicted by setting the regression analysis section to 30%, 50%, and 70% of the total data. Thus, regardless of the weight assignment method, the settlement prediction based on the hyperbolic method demonstrated a remarkable increase in accuracy as the regression analysis section increased. The weighted nonlinear regression hyperbolic method predicted settlement more accurately than the existing linear regression hyperbolic method. In particular, despite a smaller regression analysis section, the weighted nonlinear regression hyperbolic method showed higher settlement prediction performance than the existing linear regression hyperbolic method. Thus, it was confirmed that the weighted nonlinear regression hyperbolic method could predict settlement much faster and more accurately.

설계 단계에서의 침하 예측은 주로 이론적 침하 예측 방법에 의해 수행되지만, 정확도의 문제로 인해 시공 단계에서는 주로 시간에 따른 침하량 계측 결과를 토대로 장래 침하량을 예측하는 계측 기반 침하 예측 방법을 적용하고 있다. 계측 기반 침하 예측 방법 중에서도 쌍곡선법이 주로 쓰이고 있으나 기존의 쌍곡선법은 정확도가 떨어지며 통계적 측면에서 한계점이 명확하기 때문에, 가중 비선형 회귀 분석 기반의 쌍곡선법이 제안된 바 있다. 본 연구에서는 가중 비선형 회귀 쌍곡선법에 두 가지 가중치 부여 방식을 적용하여 침하 예측 정확도를 비교 분석하였다. 부산 신항에 위치한 두 현장에서 측정한 지표침하판 데이터를 활용했으며, 회귀분석 구간을 전체 데이터에 30, 50, 70%로 설정해 나머지 구간의 침하를 예측했다. 그 결과, 가중치 부여 방식과 무관하게 쌍곡선법 기반의 침하 예측 방법은 모두 회귀 분석 구간이 증가할수록 정확도가 높게 나타났으며, 가중 비선형 회귀 쌍곡선법을 통해 기존 선형 회귀 쌍곡선법 보다 정확하게 침하를 예측할 수 있었다. 특히 더 작은 회귀분석 구간이 적용되었음에도 가중 비선형 회귀 쌍곡선법이 기존 선형 회귀 쌍곡선법에 비해 높은 침하 예측 성능을 보여, 가중 비선형 회귀 쌍곡선법을 통해 훨씬 빠르고 정확하게 침하량을 예측할 수 있음을 확인했다.

Keywords

Acknowledgement

본 연구는 해양수산부의 지원으로 수행되었습니다. 이에 감사의 뜻을 표합니다.

References

  1. Anderson, L. R., Sampaco, C. L., Gilani, S. H., Keane, E., and Rausher, L. (1994), "Settlements of Highway Embankments on Soft Lacustrine Deposits", Vertical and Horizontal Deformations of Foundations and Embankments, ASCE Geotechnical Publication, No.40, pp.376-395. 
  2. Asaoka, A. (1978) "Observational Procedure of Settlement Prediction", Soils and Foundations, Vol.18, No.4, pp.87-101.  https://doi.org/10.3208/sandf1972.18.4_87
  3. Choo, Y. S., Kim, J. H., Hwang, S. H., and Chung, C. K. (2010), "The Optimization of Hyperbolic Settlement Prediction Method with the Field Data for Preloading on the Soft Ground", Journal of the Korean geotechnical society, Vol.26, No.7, pp.147-159 (in Korean).  https://doi.org/10.7843/KGS.2010.26.7.147
  4. Chung, S. G., Choi, G. H., Choi, H. K., and Cho, K. Y. (1998), "${\sqrt{s}}$ - Observational Procedure for Consolidation Analysis", Geotechnical Engineering, Vol.14, No.2, pp.41-53. 
  5. Daoud. (2017), "Multicollinearity and Regression Analysis", Journal of Physics: Conference Series, Vol.949. 
  6. Farrar, E. and Glauber, R. (1967), "Multicollinearity in Regression Analysis: The Problem Revisited", The Review of Economics and Statistics, Vol.49, No.1, pp.92-107.  https://doi.org/10.2307/1937887
  7. Frisch, R. (1934), "Statistical Confluence Analysis by Means of Complete Regression Systems", Oslo, Norway: University Institute for Economics, Vol.5, pp.5-8. 
  8. Hoshino, S. (1962), "Problems of Foundation s in Recent Years", Society of Civil Engineering, Vol.47, No.7, pp.63-67 (in Japanese). 
  9. Kwak, T. Y., Hong, S., Lee, J. H., and Woo, S. I. (2022), "Analysis of the Limitations of the Existing Subsidence Prediction Method Based on the Subsidence Measurement Data and Suggestions for Improvement Method Through Weighted Nonlinear Regression Analysis", Journal of the Korean geotechnical society, Vol.38, No.12, pp.103-112 (in Korean).  https://doi.org/10.7843/KGS.2022.38.12.103
  10. Mikasa, M. (1963), "Consolidation of Soft Clay", Kajima-shuppan-kai, Tokyo, Japan (in Japanese). 
  11. Monden, H. (1963), "A New Time Fitting Method for the Settlement Analysis of Foundation on Soft Clays", Menoir Fac. Eng., Hiroshima University, Vol.20, No.1, pp.21. 
  12. Tan, S. A. (1993), "Ultimate Settlement by Hyperbolic Plot for Clays with Vertical Drains", Journal of Geotechnical Engineering, ASCE, Vol.119, No.5, pp.950-956.  https://doi.org/10.1061/(ASCE)0733-9410(1993)119:5(950)
  13. Tan, S. A. (1995), "Validation of Hyperbolic Method for Settlement in Clays with Vertical Drains", Soils and Foundations, Vol.35, No.1, pp.101-113.  https://doi.org/10.3208/sandf1972.35.101
  14. Tan, S. A. and Chew, S. H. (1996), "Comparison of the Hyperbolic and Asaoka Observational Method of Monitoring Consolidation with Vertical Drains", Soils and Foundations, Vol.16, No.3, pp. 31-42  https://doi.org/10.3208/sandf.36.3_31
  15. Tan, T. S., Inoue, T., and Lee, S. L. (1991), "Hyperbolic Method for Consolidation Analysis", Journal of Geotechnical Engineering, ASCE, Vol.117, No.11, pp.1723-1737.  https://doi.org/10.1061/(ASCE)0733-9410(1991)117:11(1723)
  16. Terzaghi, K. (1943), Theoretical Soil Mechanics. John Wiley & Sons, New York, USA. 
  17. Thompson, C. G., Kim, R. S., Aloe, A. M., and Becker, B. J. (2017), "Extracting the Variance Inflation Factor and Other Multicollinearity Diagnostics from Typical Regression Results", Basic and Appl Social Psychol, Vol.39, No.2, pp.81-90.  https://doi.org/10.1080/01973533.2016.1277529
  18. Yoo, H. K. and Kim, J. H. (2000), "A Study on the Prediction of Long-Term Settlement by the Modified Hyperbolic Method", Journal of the Korean geotechnical society, Vol.16, No.3, pp.163-172.