DOI QR코드

DOI QR Code

손가락 부상 환자의 재활을 위한 장갑형 웨어러블 시스템

A Wearable Glove System for Rehabilitation of Finger Injured Patients

  • 성지훈 (동국대학교 기계공학과) ;
  • 최현진 (상명대학교 휴먼지능로봇공학과)
  • 투고 : 2023.02.25
  • 심사 : 2023.04.17
  • 발행 : 2023.04.30

초록

손가락 골절 치료 후에는 장시간 사용하지 않아 손가락 힘줄 운동 능력이 떨어져 관절이 뻣뻣해지고, 경직된다. 이것은 근력손실 및 유연성 저하를 비롯한 손 사용의 어려움으로 이어질 수 있다. 이를 해결하기 위해서는 손가락의 유연성 회복과 근력 강화를 위한 반복적인 재활 훈련을 해야 한다. 본 연구에서는 집에서도 사용할 수 있는 손가락 힘 훈련용 웨어러블 장갑 시스템을 제안한다. 제안하는 시스템은 FSR센서를 사용하여 힘을 측정하며, 신호 획득을 위한 맞춤형 PCB를 적용했고 고무 밴드를 사용하여 크기를 조정할 수 있다. 균형잡힌 손가락 근력 훈련 평가를 위해 네 가지 경우의 동작에서 쥐는 힘 측정 결과를 분석하였다. 본 연구에서는 다섯 손가락 힘의 중심을 나타내는 벡터를 제안하며, 힘의 균형 수준을 수치적으로 나타낼 수 있음을 보였다.

When patients suffer from finger injuries, their finger joints can become stiff and inflexible due to decreased ability to exercise the finger tendons. This can lead to a loss of strength and difficulty using their hands. To address this, it is important to provide patients with consistent rehabilitation treatment that can help restore finger flexibility and strength simultaneously. In this study, we propose wearable gloves that use FSRs (force sensitive resistors) for finger strength training. The glove is designed to be adjustable using rubber bands and a custom PCB is designed for signal acquisition. For the evaluation of finger strength training, the result was analyzed in four cases. We suggest a vector that represents the center of five finger forces, and the result shows that the vector can indicate the level of force balance.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No.2021R1F1A1062499).

참고문헌

  1. D. Kim, S. Park, K. Oh, and Y. Kim, "Current Status of Decreased Grip Strength in the Elderly in Korea," Weekly Health and Illness, vol. 15, no. 19, 2022, pp. 1280-1287.
  2. S. Hong, "Development of smart healthcare contents using virtual reality experiential devices," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 4, 2022, pp. 739-744.
  3. J. Moon and I. Bak, "The Effects of Self-Exercise Based on Health Care Application on Upper Extremity Function and Daily Living, Satisfaction in Patients with Stroke," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 3, 2017, pp. 515-523.
  4. J. Park, "Effect of Robot-Assisted Hand Rehabilitation on Hand Function in Chronic Stroke Patients," Journal of Korea Robotics Society, vol. 8, no. 4, 2013, pp. 273-282. https://doi.org/10.7746/jkros.2013.8.4.273
  5. H. Kim and G. Kim, "Development of a Finger-rehabilitation Robot for Fingers' Flexibility Rehabilitation Exercise," International Journal of Precision Engineering and Manufacturing, vol. 14, no. 4, 2013, pp. 535-541. https://doi.org/10.1007/s12541-013-0073-3
  6. Y. Yun, S. Dancausse, P. Esmatloo, A. Serrato, C. Merring, P. Aqarwal, and A. Deshpande, "Maestro: An EMG-Driven Assistive Hand Exoskeleton for Spinal Cord Injury Patients," IEEE International Conference on Robotics and Automation(ICRA), Singapore, 2017, pp. 2904-2910.
  7. C. Castellini and V. Ravindra, "A wearable low-cost device based upon Force-Sensing Resistors to detect single-finger forces," 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 2014, pp. 199-203.
  8. B. Wang, N. Takahashi, and H. Koike, "Sensor Glove Implemented with Artificial Muscle Set for Hand Rehabilitation," The Augmented Humans (AHs) International Conference, Kaiserslautern, Germany, 2020.
  9. S. Baek, H. Kim, and J. Kim, "Design and implementation of motor-based rehabilitation wearable robot hand system using 3D printing," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 5, 2021, pp. 941-946.
  10. Y. Chen, X. Tan, D. Yan, Z. Zhang, and Y. Gong, "A Composite Fabric-Based Soft Rehabilitation Glove with Soft Joint for Dementia in Parkinson's Disease," IEEE Journal of Translational Engineering in Health and Medicine, vol. 8, 2020, pp. 1-10. https://doi.org/10.1109/JTEHM.2020.2981926