DOI QR코드

DOI QR Code

Geometry and Kinematics of the Northern Part of Yeongdeok Fault

영덕단층 북부의 기하와 운동학적 특성

  • Gwangyeon Kim (Department of Geological Sciences, Pusan National University) ;
  • Sangmin Ha (Department of Geological Sciences, Pusan National University) ;
  • Seongjun Lee (Department of Geological Sciences, Pusan National University) ;
  • Boseong Lim (Department of Geological Sciences, Pusan National University) ;
  • Min-Cheol Kim (Department of Geological Sciences, Pusan National University) ;
  • Moon Son (Department of Geological Sciences, Pusan National University)
  • 김광연 (부산대학교 지질환경과학과) ;
  • 하상민 (부산대학교 지질환경과학과) ;
  • 이성준 (부산대학교 지질환경과학과) ;
  • 임보성 (부산대학교 지질환경과학과) ;
  • 김민철 (부산대학교 지질환경과학과) ;
  • 손문 (부산대학교 지질환경과학과)
  • Received : 2023.02.13
  • Accepted : 2023.03.26
  • Published : 2023.03.31

Abstract

This study aims to identify the fault zone architecture and geometric and kinematic characteristics of the Yeongdeok Fault, based on the geometry and kinematic data of various structural elements obtained by detailed field survey and anisotropy of magnetic susceptibility (AMS) of the fault rocks. The Yeongdeok Fault extends from Opo-ri, Ganggu-myeon, Yeongdeok-gun to Gilgok-ri, Maehwa-myeon and Bangyul-ri, Giseong-myeon, Uljin-gun, and cuts various rock types from the Paleo-proterozoic to the Mesozoic with a range of 4.6-5.0 km (4.77 km in average) of right-lateral offset or forms the rock boundaries. The fault is divided into four segments based on its geometric features and shows N-S to NNW strikes and dips of an angle of ≥ 54° to the east at most outcrops, even though the outcrops showing the westward dipping (a range of 54°-82°) of fault surface increase as it goes north. The Yeongdeok Fault shows the difference in the fault zone architecture and in the fault core width ranging from 0.3 to 15 m depending on the bedrock type, which is interpreted as due to differences in the physical properties of bedrock such as ductility, mineral composition, particle size, and anisotropy. Combining the results of paleostress reconstruction and AMS in this and previous studies, the Yeongdeok Fault experienced (1) sinistral strike-slip under NW-SE maximum horizontal principle stress (σHmax) and NE-SW minimum horizontal principle stress (σHmin) in the late Cretaceous to early Cenozoic, and then (2) dextral strike-slip under NE-SW maximum horizontal principle stress (σHmax) and NW-SE minimum horizontal principle stress (σHmin) in the Paleogene. It is interpreted that the deformation caused by the Paleogene dextral strike-slip movement was the most dominant, and the crustal deformation was insignificant thereafter.

이번 연구는 영덕단층 일원을 대상으로 실시된 상세 지표지질조사에서 수집된 다양한 구조요소들의 기하와 운동학적 자료 그리고 단층암의 대자율이방성 분석 자료를 바탕으로 영덕단층의 내부구조 그리고 기하와 운동학적 특성을 규명하고자 하였다. 영덕단층은 영덕군 강구면 오포리에서 울진군 매화면 길곡리와 기성면 방율리까지 연장되며, 4.6-5.0 km (평균 4.77 km)의 우수향 수평변위로 고원생대부터 중생대에 이르는 다양한 암종을 절단하거나 암상경계를 이룬다. 영덕단층은 4개의 기하학적 분절로 구분되며, 대부분 노두에서 남-북 내지 북북서 주향에 54° 이상 고각으로 동쪽으로 경사지고 있으나 북쪽으로 갈수록 서쪽으로 54°-82° 경사지는 노두가 증가한다. 영덕단층은 모암의 암종에 따라 0.3-15 m 범위의 다양한 폭을 가진 단층핵과 단층대 내부구조의 차이를 보이는데, 이는 모암의 연성도, 구성광물, 입자크기, 이방성과 같은 물성 차이에 기인하는 것으로 해석된다. 이번 연구에서 새롭게 도출한 고응력장 및 대자율이방성 분석 결과와 기존 연구 결과를 종합하면, 영덕단층은 (1) 백악기말~신생대초에 북서-남동 최대수평응력(σHmax)과 북동-남서 최소수평응력(σHmin) 하에서 좌수향 주향이동운동을 겪은 이후, (2) 신생대 고진기에 북동-남서 최대수평응력과 북서-남동 최소수평응력 하에서 우수향 주향이동운동을 겪었음을 지시한다. 이중 고진기에 발생한 우수향 주향이동운동에 의한 변형이 가장 우세하였으며 이후 지각변형은 미미하였던 것으로 해석된다.

Keywords

Acknowledgement

본 연구는 행정안전부 지진 위험분석 및 관리기술 개발사업(2022-MOIS62-001)과 '지진방재분야 전문인력양성 사업'의 지원에 의해 수행되었습니다. 심사과정에서 논문의 질적 향상을 위해 날카로운 비평과 건설적인 조언을 해주신 익명의 심사위원과 편집위원께 감사드립니다.

References

  1. Antonellini, M. and Aydin, A., 1994, Effect of faulting on fluid flow in porous sandstone: petrophysical properties. American Association of Petroleum Geologists Bulletin, 78, 355-377.  https://doi.org/10.1306/BDFF90AA-1718-11D7-8645000102C1865D
  2. Astudillo, N., Roperch, P., Townely, B., Arriagada, C. and Maksaev, V., 2008, Importance of small-block rotations in damage zones along transcurrent faults. Evidence from the Chuquicamata open pit, Northern Chile. Tectonophysics, 450, 1-20.  https://doi.org/10.1016/j.tecto.2007.12.008
  3. Balsley, J.R. and Buddington, A.F., 1960, Magnetic susceptibility anisotropy and fabric of some Adirondack granites and ortho-gneisses. American Journal of Science, 258, 6-20. 
  4. Bense, V.F., Gleeson, T., Loveless, S.E., Bour, O. and Scibek, J., 2013, Fault zone hydrogeology. Earth-Science Reviews, 127, 171-192.  https://doi.org/10.1016/j.earscirev.2013.09.008
  5. Byerlee, J.D., 1993, Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology, 21, 303-306.  https://doi.org/10.1130/0091-7613(1993)021<0303:MFEFOH>2.3.CO;2
  6. Cain, J.S., Evans, J.P. and Forster, C.B., 1996, Fault zone architecture and permeability structure. Geology, 24, 1025-1028.  https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
  7. Chang, C.J. and Chang, T.W., 1998, Movement History of the Yangsan Fault based on Paleostress Analysis. The Journal of Engineering Geology of Korea, 8, 35-49 (in Korean with English abstract). 
  8. Chang, K.H., Woo, B.G., Lee, J.H., Park, S.O. and Yao, A., 1990, Cretaceous and Early Cenozoic stratigraphy and history of eastern Kyongsang Basin, S. Korea. Journal of the Geological Society of Korea, 26, 471-487. 
  9. Cheon, Y., Cho, H., Ha, S., Kang, H., Kim, J.-S. and Son, M., 2019, Tectonically controlled multiple deformations along the Yangsan Fault Zone, SE Korea, since Late Cretaceous. Journal of Asian Earth Sciences, 170, 188-207.  https://doi.org/10.1016/j.jseaes.2018.11.003
  10. Cheon, Y., Ha, S.M., Lee, S., Cho, H. and Son, M., 2017, Deformation features and history of the Yangsan Fault Zone in the Eonyang-Gyeongju area, SE Korea. Journal of the Geological Society of Korea, 53, 95-114 (in Korean with English abstract).  https://doi.org/10.14770/jgsk.2017.53.1.95
  11. Cheong, C.S., Kwon, S.T., Kim, J.M. and Chang, B.U., 1998, Geochemical and Isotopic Study of the Onjeongri Granite in the Northern Gyeongsang Basin, Korea: Comparison with Cretaceous to Tertiary Granitic Rocks in the Other Part of the Gyeongsang Basin and the Inner Zone of Southwest Japan. Journal of the Petrological Society of Korea, 7, 77-97 (in Korean with English abstract). 
  12. Chester, F.M. and Logan, J.M., 1986, Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Pure and applied geophysics, 124, 79-106.  https://doi.org/10.1007/BF00875720
  13. Chester, F.M., Evans, J.P. and Biegel, R., 1993, Intemal Structure and Weakening Mechanisms of the San Andreas Fault. Journal of Geophysical Research, 98, 771-786.  https://doi.org/10.1029/92JB01866
  14. Cho, H., Kim, M.-C., Kim, H. and Son, M., 2014, Anisotropy of Magnetic Susceptibility (AMS) of the Quaternary Faults, SE Korea: Application to the Determination of Fault Slip Sense and Paleo-stress Field. Journal of the Petrological Society of Korea, 23, 75-103 (in English with Korean abstract).  https://doi.org/10.7854/JPSK.2014.23.2.75
  15. Choi, J.H., Edwards, P., Ko, K.T. and Kim, Y.S., 2016, Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews, 152, 70-87.  https://doi.org/10.1016/j.earscirev.2015.11.006
  16. Choi, J.H., Yang, S.J. and Kim, Y.-S., 2009, Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea. The Journal of the Geological Society of Korea, 45, 9-28 (in Korean with English abstract). 
  17. Choi, J.H., Yang, S.J., Han, S.-R. and Kim, Y.-S., 2015, Fault zone evolution during Cenozoic tectonic inversion in SE Korea. Journal of Asian Earth Sciences, 98, 167-177.  https://doi.org/10.1016/j.jseaes.2014.11.009
  18. Delvaux, D. and Sperner, B., 2003, New aspects of tectonic stress inversion with reference to the TENSOR program. In: New Insights into Structural Interpretation and Modelling (Nieuwland, D.A. Ed.). Geological Society, London, Special Publications, 212, 75-100.  https://doi.org/10.1144/GSL.SP.2003.212.01.06
  19. Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V. and San'kov, V., 1997, Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282, 1-38.  https://doi.org/10.1016/S0040-1951(97)00210-2
  20. Faulkner, D.R., Lewis, A.C. and Rutter, E.H., 2003, On the internal structure and mechanics of large strike-slip fault zones: Field observations of the Carboneras Fault in southeastern Spain. Tectonophysics, 367, 235-251.  https://doi.org/10.1016/S0040-1951(03)00134-3
  21. Faulkner, D.R., Mitchell, T.M., Rutter, E.H. and Cembrano, J., 2008, On the structure and mechanical properties of large strike-slip faults. In: Wibberley, C.A.J., Kurz, W., Imber, J., Holdsworth, R.E. and Collettini, C. (eds) the internal structure of fault zones: Implications for mechanical and fluid-flow properties. Geological Society, London, Special Publication, 299, 139-150. 
  22. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J. and Withjack, M.O., 2010, A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32, 1557-1575.  https://doi.org/10.1016/j.jsg.2010.06.009
  23. Forster, C.B. and Evans, J.P., 1991, Hydrogeology of thrust faults and crystalline thrust sheets: Results of combined field and modeling studies. Geophysical Research Letters, 18, 979-982.  https://doi.org/10.1029/91GL00950
  24. Fossen, H., 2010, Structural Geology. Cambridge University Press, New York, 463p. 
  25. Goddard, J.V. and Evans, J.P., 1995, Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, USA. Journal of Structural Geology, 17, 533-547.  https://doi.org/10.1016/0191-8141(94)00068-B
  26. Ha, S., Cheon, Y., Kang, H.-C., Kim, J.-S., Lee, S.-K. and Son, M., 2016, Geometry and kinematics of the subsidiary faults of the Ilgwang fault, SE Korea. Journal of the Geological Society of Korea, 52, 31-50 (in Korean with English abstract).  https://doi.org/10.14770/jgsk.2016.52.1.31
  27. Han, S.-R., Kim, Y.-S. and Park, J.-Y., 2009, Evolution modeling of the Yangsan-Ulsan fault system with stress changes. Journal of the Geological Society of Korea, 45, 361-377 (in Korean with English abstract). 
  28. Hatae, N., 1937, Geological Atlas of Korea, Yanghae and Yongdok sheet (1:50,000). Geological Survey of Korea. 
  29. Hrouda, F., 1982, Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5, 37-82.  https://doi.org/10.1007/BF01450244
  30. Jelinek, V., 1981, Characterization of the magnetic fabric of rocks. Tectonophysics, 79, 63-67.  https://doi.org/10.1016/0040-1951(81)90110-4
  31. Kang, H.-C., Cheon, Y., Ha, S.M., Seo, K., Shin, H.C. and Son, M. 2018, Geology and U-Pb age in the eastern part of Yeongdeok-gun, Gyeongsangbuk-do, Korea. Journal of the Petrological Society of Korea, 27, 153-171.  https://doi.org/10.7854/JPSK.2018.27.3.153
  32. Kee, W.S., Kim, S.W., Hong, P.S., Lee, B.G., Cho, D.R., Byun, U.H., Ko, K., Kwon, C.W., Kim, H.C., Jang, Y., Song, K.Y., Koh, H.J. and Lee, H.J., 2020, 1:1,000,000 Geological map of Korea. Korea Institute of Geosicence and Mineral Resources. 
  33. Kim, C.-M., Cheon, Y.B., Lee, T.-H., Choi, J.-H., Ha, S.M., and Jeong, J.O., 2022, Long Term Weakening Processes and Short Term Seismic Slip Behavior of an Intraplate Mature Fault Zone: A Case Study of the Yangsan Fault, SE Korea. Journal of Geophysical Research: Solid Earth, 127, e2021JB023154. 
  34. Kim, C.-M., Han, R., Jeong, G.Y., Jeong, J.O. and Son, M., 2016, Internal structure and materials of the Yangsan fault, Bogyeongsa area, Pohang, South Korea. Geosciences Journal, 20, 759-773.  https://doi.org/10.1007/s12303-016-0019-8
  35. Kim, N.H., Park, K.-H., Song, Y.S. and Kang, J.-H., 2002, A note on absence of Giseong Series and relation of Precambrian Pyeonghae Series and Wonnam Series of Pyeonghae-Uljin area. Journal of the Petrological Society, 11, 271-277 (in Korean with English abstract). 
  36. Kim, O.J., Hong, M.S., Park, H.I., Won, J.K., Park, Y.D. and Kim, K.T., 1963, Explanatory text of the geological map of Pyeonghae sheet, 1:50,000. Geological survey of Korea, 54 p.
  37. Kim, Y.-S., Peacock, D.C.P. and Sanderson, D.J., 2004, Fault damage zones. J. Struct. Geol. 26, 503-517.  https://doi.org/10.1016/j.jsg.2003.08.002
  38. Lee, H.-K. and Kim, H.S., 2005, Comparison of structural features of the fault zone developed at different protoliths: Crystalline rocks and mudrocks. Journal of Structural Geology, 27, 2099-2112.  https://doi.org/10.1016/j.jsg.2005.06.012
  39. Lin, A. and Yamashita, K., 2013, Spatial variations in damage zone width along strike-slip faults: An example from active faults in southwest Japan. Journal of Structural Geology, 57, 1-15.  https://doi.org/10.1016/j.jsg.2013.10.006
  40. Mayolle, S., Soliva, R., Caniven, Y., Wibberley, C., Ballas, G., Milesi, G. and Dominguez, S., 2019, Scaling of fault damage zones in carbonate rocks. Journal of Structural Geology, 124, 35-50.  https://doi.org/10.1016/j.jsg.2019.03.007
  41. McGrath, A.G. and Davison, I., 1995, Damage zone geometry around fault tips. Journal of Structural Geology, 17, 1011-1024.  https://doi.org/10.1016/0191-8141(94)00116-H
  42. Newman, J. and Mitra. G., 1994, Fluid-influenced deformation and recrystallization of dolomite at low temperatures along a natural fault zone, Mountain City window, Tennessee. Geological Society of America Bulletin, 106, 1267-1280.  https://doi.org/10.1130/0016-7606(1994)106<1267:FIDARO>2.3.CO;2
  43. Randolph, L. and Johnson, B., 1989, Influence of faults of moderate displacement on groundwater flow in the Hickory Sandstone aquifer in central Texas. Geological Society of America Abstracts, 21, 242. 
  44. Scholz, C.H., 1990, The Mechanics of Earthquakes and Faulting. Cambridge University Press, London. 512p. 
  45. Scholz, C.H. and Anders, M., 1994, The permeability of faults. The mechanical involvement of fluids in faulting. US Geological Survey Open File Report, 94, 247-253. 
  46. Seo, K.H., Ha, S.M., Lee, S.J., Kang, H.-C. and Son, M., 2019, Geometry and Kinematics of the Yeongdeok Fault in the Creataceous Gyeongsang Basin, SE Korea. Journal of the Petrological Society of Korea, 28, 171-193 (in Korean with English abstract). 
  47. Seo, Y.S., Yun, H.S., Ban, J.D. and Lee, C. K., 2016, Mechanical properties of fault rocks in Korea. The Journal of Engineering Geology, 26, 571-581.  https://doi.org/10.9720/KSEG.2016.4.571
  48. Sibson, R., 1977, Fault rocks and fault mechanisms. Journal of the Geological Society, 133, 191-213.  https://doi.org/10.1144/gsjgs.133.3.0191
  49. Smith, L., Forster, C.B. and Evans, J.P., 1990, Interaction between fault zone, fluid flow and heat transfer at the basin scale, in: Hydrogelogy of low Permeability environments, (S.P. Newman and I. Neretnieks eds.). International Association of Hydrological Sciences selected paters in Hydrogeology, 2, 41-67. 
  50. Solum, J.G. and van der Pluijm, B.A., 2009, Quantification of fabrics in clay gouge from the Carboneras fault, Spain and implications for fault behaviour. Tectonophysics, 475, 554-562.  https://doi.org/10.1016/j.tecto.2009.07.006
  51. Son, M., Kim, J.-S., Chong, H.-Y., Lee, Y.H. and Kim, I.-S., 2007, Characteristics of the Cenozoic crustal defromation in SE Korea and their tectonic implications. Korean Journal of Petroleum Geology, 13, 1-13 (in Korean with English abstract). 
  52. Stacey, F.D., Joplin, G. and Lindsay, J., 1960, Magnetic anisotropy and fabric of some foliated rocks from S.E. Australia. Geofisica Pura Applicata, 47, 30-40.  https://doi.org/10.1007/BF01992481
  53. Sun, T., Saffer, D. and Ellis, S., 2020, Mechanical and hydrological effects of seamount subduction on megathrust stress and slip. Nature Geoscience, 13, 249-255.  https://doi.org/10.1038/s41561-020-0542-0
  54. Wibberley, C.A., Yielding, G. and Di Toro, G., 2008, Recent advances in the understanding of fault zone internal structure: a review. Geological Society, London, Special Publications, 299, 5-33.  https://doi.org/10.1144/SP299.2
  55. Woo, H.-D. and Jang Y.-D., 2014, Pertrological characteristics of the Yeongdeok granite. Journal of the Petrological Society of Korea, 23, 31-43.  https://doi.org/10.7854/JPSK.2014.23.2.31
  56. Yi, K., Cheong, C.-S., Kim, J., Kim, N., Jeong, Y.-J. and Cho, M., 2012, Late Paleozoic to Early Mesozoic arc related magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry. Lithos, 153, 129-141.  https://doi.org/10.1016/j.lithos.2012.02.007