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Abstract. The aim of this article is to extend hesitant fuzzy minimal

open and hesitant fuzzy maximal open sets in hesitant fuzzy topological

space. Further, we investigate some properties with these new sets.
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1. Introduction

Zadeh[8] established fuzzy set in 1965 and Chang[1] introduced fuzzy topol-
ogy in 1968. Ittanagi and Wali[4] instigated the notions of fuzzy maximal and
minimal open sets. The idea of hesitant fuzzy set introduced by Torra[7] in 2010
which is an addendum to fuzzy sets. In 2019 Deepak et. al. [2] introduced hes-
itant fuzzy topological space and extended the study to hesitant connectedness
and compactness in hesitant fuzzy topological space. In section 2, we study few
known results. In section 3, we introduce hesitant fuzzy minimal open sets and
some of their related results. In section 4, we study hesitant fuzzy maximal open
sets and some of their proerties.

Throughout this paper the terms HFTS, HFMAO, HFMIO and HFS are
respectively denoted as “hesitant fuzzy topological space, hesitant fuzzy maximal
open, hesitant fuzzy minimal open sets and hesitant fuzzy sets”.

2. Prelimiaries

In this section basic ideas of hesitant fuzzy topological space are studied.

Definition 2.1. [5] A HFS h in X is a function h : X → P [0, 1], where P [0, 1]
represents the power set of [0,1].
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We define the hesitant fuzzy empty set h0(resp. whole set h1) is a HFS in X
as follows: h0(x) = ϕ (resp. h1(x) = [0, 1]),∀x ∈ X. HS(X) stands for collection
of HFS in X.

Definition 2.2. [3] Two HFS h1, h2 ∈ HS(X) such that h1(x) ⊂ h2(x),∀x ∈ X,
then h1 is contained in h2.

Definition 2.3. [3] Two HFS h1 and h2 of X are said to be equal if h1 ⊂ h2

and h2 ⊂ h1.

Definition 2.4. [5] Let h ∈ HS(X) for any nonempty set X. Then hc is the
complement of h which is HFS in X such that hc(x) = [h(x)]c = [0, 1]\h(x).

Definition 2.5. [6] Let (X, τ) be a HFTS. Let xλ ∈ Hp(X) and N ∈ HS(G).
Then the hesitant fuzzy neighbourhood N of xλ is defined as if for an hestitant
fuzzy set U ∈ τ such that xλ ∈ U ⊂ N .

3. HESITANT FUZZY MINIMAL OPEN SETS

Definition 3.1. A proper nonzero HFO set h in HFTS (X, τ) is said to be
HFMIO iff HFO set contained in h is h0 or h.

Lemma 3.2. Let (X, τ) be a HFTS.
(i) If h1 is HFMIO and h2 is HFO in X, then h1 ∩ h2 = h0 or h1 ⊂ h2.
(ii) If h1 and h2 are HFMIO, then h1 ∩ h2 = h0 or h1 = h2.

Proof. (i) Let us assume that h2 is HFO in X such that h1 ∩ h2 ̸= h0. Since h1

is HFMIO, and h1 ∩ h2 ⊂ h1, then h1 ∩ h2 = h1 implies that h1 ⊂ h2.
(ii) Suppose that h1 ∩ h2 ̸= h0, then clearly from(ii), h1 ⊂ h2 and h2 ⊂ h1 as

h1 and h2 are HFMIO. Hence h1 = h2. □

Theorem 3.3. Let h and hi are HFMIO sets for any i ∈ M . If h ⊆
⋃

i∈M

hi,

then h = hj for any j ∈ M .

Proof. Suppose h ⊆
⋃

i∈M

hi, then h = h∩
( ⋃

i∈M

hi

)
=
⋃

i∈M

(h ∩ hi). By deploying

lemma 3.2(ii), h ∩ hi = h0 or h = hi as h and hi are HFMIO sets. If h∩hi = h0,
then h = h0 which contradicts that h is a HFMIO set. Hence if h∩hi ̸= h0 then
h = hj for any j ∈ M . □

Theorem 3.4. If h and hi are HFMIO sets for any i ∈ M and h ̸= hi, then

h ∩
( ⋃

i∈M

hi

)
= h0 for any i ∈ M .

Proof. Let h ∩
( ⋃

i∈M

hi

)
̸= h0, then h ∩ hi ̸= h0 for any i ∈ M . By deploying

lemma 3.2(ii), h = hi contradictory to h ̸= hi. Hence h ∩
( ⋃

i∈M

hi

)
= h0. □
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Theorem 3.5. If hi is a HFMIO for any i ∈ M (|M | ≥ 2) and hi ̸= hj for any

distinct i, j ∈ M . Then

( ⋃
i∈M\{j}

hi

)
∩ hj = h0 for any j ∈ M .

Proof. Let

( ⋃
i∈M\{j}

hi

)
∩ hj ̸= h0. Then

⋃
i∈M\{j}

(hi ∩ hj) ̸= h0 ⇒ (hi ∩ hj) ̸=

h0. By lemma 3.2(ii), hi = hj , a contradiction. Hence

( ⋃
i∈M\{j}

hi

)
∩ hj = h0

for any j ∈ M . □

Theorem 3.6. If hi is a HFMIO for any i ∈ M, (|M | ≥ 2) and hi ̸= hj for any

distinct i, j ∈ M . If K is a proper HFS of M , then

( ⋃
i∈M\K

hi

)⋂( ⋃
s∈K

hs

)
=

h0.

Proof. Let

( ⋃
i∈M\K

hi

)⋂( ⋃
s∈K

hs

)
̸= h0. It implies that

⋃
(hi ∩ hs) ̸= h0 for

i ∈ M\K and s ∈ K implies that hi ∩ hs ̸= h0 for some i ∈ M and s ∈ K. By

lemma3.2(ii), hi = hs, which is a contradiction. Hence

( ⋃
i∈M\K

hi

)⋂( ⋃
s∈K

hs

)
=

h0. □

Theorem 3.7. If hi is a HFMIO for any i ∈ M such that hi ̸= hj for any

distinct i, j ∈ M . If S is a proper nonzero HFS of M , then

[ ⋃
i∈M\k

hi

]
∩[ ⋃

k∈S

hk

]
= h0.

Proof. Assume that ∪ [hi ∩ hk] ̸= h0 for i ∈ M\k,k ∈ S. Clearly, for some
i ∈ M ,k ∈ S we have [hi ∩ hk] ̸= h0. By deploying lemma 3.2(ii) hi = hk, a
contradiction. □

Theorem 3.8. If hi and hk are HFMIO sets for any i ∈ M and k ∈ S and if

∃ an n ∈ S such that hi ̸= hn for any i ∈ M , then

[ ⋃
n∈K

hn

]
̸⊂
[ ⋃
i∈M

hi

]
.

Proof. Assume that ∃ an n ∈ S such that hi ̸= hn for any i ∈ M , then[ ⋃
n∈K

hn

]
⊂
[ ⋃
i∈M

hi

]
.

⇒ hn ⊂
[ ⋃
i∈M

hi

]
for some n ∈ K.

⇒ hi ̸= hn for any i ∈ M , by theorem 3.3, which is a contradiction. Hence[ ⋃
n∈K

hn

]
̸⊂
[ ⋃
i∈M

hi

]
. □
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Theorem 3.9. If hi is a HFMIO for any i ∈ M such that hi ̸= hj for any

distinct i, j ∈ M , then

[ ⋃
k∈K

hk

]
⫋
[ ⋃
i∈M

hi

]
for any proper nonzero subset K of

M .

Proof. Let m ∈ M\K, then hm is a HFMIO set of the family {hm|m ∈ M\K} of

HFMIO sets. Clearly hm∩
[ ⋃
k∈K

hk

]
=
⋃

k∈K

[hm ∩ hk] = h0. Also hm∩
[ ⋃
i∈M

hi

]
=⋃

i∈M

[hm ∩ hi] = hm.

If

[ ⋃
k∈K

hk

]
=

[ ⋃
i∈M

hi

]
, then hm = h0 which is a contradiction that hm is a

HFMIO set. Hence

[ ⋃
k∈K

hk

]
⫋
[ ⋃
i∈M

hi

]
. □

Theorem 3.10. If hi is a HFMIO set for any i ∈ M such that hi ̸= hj for any
distinct i, j ∈ M , then

(i) hj ⊂

[ ⋃
i∈M\{j}

hi

]c
for some j ∈ M .

(ii)
⋃

i∈M\{j}
hi ̸= h1 for any j ∈ M .

Proof. (i) By hypothesis, hi ̸= hj for any distinct i, j ∈ M .

By theorem 3.4,

[ ⋃
i∈M

hi

]
∩ hj = h0 which is true for any j ∈ M.

⇒
⋃

i∈M

[hi ∩ hj ] = h0

⇒ hi ∩ hj = h0 (By Lemma 3.2(ii))
⇒ hi ⊂ hj

c

⇒
⋃

i∈M\{j}
hi ⊂ hj

c. Hence proved.

(ii) Let j ∈ M such that
⋃

i∈M\{j}
hi = h1

⇒ hi = h0

⇒ hi is not a HFMIO set, a contradiction. Hence
⋃

i∈M\{j}
hi ̸= h1 for any

j ∈ M . □

Corollary 3.11. If hi is a HFMIO set for any i ∈ M such that hi ̸= hj for any
distinct i, j ∈ M . Then hi ∪ hj ̸= h1 for any distinct i, j ∈ M .

Proof. Similar to that of “Theorem 3.10(ii).” □

Theorem 3.12. If hi is a HFMIO sets for any i ∈ M such that hi ̸= hj for

any distinct i, j ∈ M , then hj =

[ ⋃
i∈M

hi

]
∩

[ ⋃
i∈M\{j}

hi

]c
for any j ∈ M .
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Proof. For any j ∈ M ⇒
[ ⋃
i∈M

hi

]⋂[ ⋃
i∈M\{j}

hi

]c

=

[ ⋃
i∈M\{j}

hi
⋃

hj

]
∩

[ ⋃
i∈M\{j}

hi

]c

=

[( ⋃
i∈M\{j}

hi

)
∩

( ⋃
i∈M\{j}

hi

)c]⋃[
hj ∩

( ⋃
i∈M\{j}

hi

)c]
= h0 ∪ hj

= hj for any j ∈ M . □

Proposition 3.13. Let G be a HFMIO set. If xλ ∈ G, then G ⊂ G1 for any
hesitant fuzzy open neighbourhood G1 of xλ.

Proof. Let G1 be an hesitant fuzzy open neighbourhood of xλ such that G ̸⊂ G1.
Clearly G∩G1 is an HFO such that G∩G1 ⊊ G and G∩G1 ̸= h0. This implies
that G is a HFMIO set which a contradiction. □

Proposition 3.14. Let G be a HFMIO set. Then
G =

⋂
{G1| G1 is an hesitantfuzzyopenneighbourhood of xλ} for any

xλ ∈ G.

Proof. By deploying Proposition 3.13 and as G is an hesitant fuzzy open neigh-
bourhood of xλ, we have
G ⊂

⋂
{G1| G1 is an hesitant fuzzy open neighbourhood of xλ} ⊂

G. This completes the proof. □

Theorem 3.15. Let G be a HFMIO set. Then the following conditions are
equivalent.
(i) G is HFMIO set.
(ii)G ⊂ ClH(K) for any nonzero subset K of G.
(iii)ClH(G) = ClH(K) for any nonzero subset K of G.

Proof. (i) ⇒ (ii): By deploying “proposition 3.13”for any xλ ∈ G and hesitant
fuzzy open neighbourhood M of xλ, we have K = (G ∩K) ⊂ (M ∩K) for any
proper nonzero hesitant fuzzy subset K ⊂ G. Therefore, we have (M ∩K) ̸= h0

and xλ ∈ ClH(K). It follows that G ⊂ ClH(K).
(ii) ⇒ (iii): For any proper hesitant fuzzy subset K of G, ClH(G) ⊂ ClH(K).

Also by(ii) ClH(G) ⊂ ClH (ClH(K)) = ClH(K). Hence proved.
(iii) ⇒ (i): Let us assume thatG is not HFMIO. Then ∃ a proper HFOD such

that D ⊂ G.Then ∃ yα ∈ G such that yα ̸∈ D. Then ClH({yα}) ∈ Dc implies
that ClH({yα}) ̸= ClH(G), a contradiction. This completes our proof. □

4. HESITANT FUZZY MAXIMAL OPEN SETS AND ITS
PROPERTIES

Definition 4.1. A proper nonzero HFO set h of a HFTS (X, τ) is said to
HFMAO if any HFO set which contains h is either h or h1.

Example 4.2. Let X = {a, b} and τ = {h0, h1, h1, h2, h3, h4} with

h1(a) = [0.3, 1], h1(b) = {0.2, 0.6.0.9}
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h2(a) = [0.3, 1), h2(b) = {0.2, 0.6.0.8}
h3(a) = [0.3, 1), h3(b) = {0.2, 0.6}

h4(a) = [0.3, 1], h4(b) = {0.2, 0.6, 0.8, 0.9}
is a HFTS X. Here h3 is an HFMIO set and h4 is an HFMAO set.

Lemma 4.3. Let (X, τ) be a HFTS. Then
(i) If h1 is a HFMAO and h2 is HFO in X, then h1 ∪ h2 = h1 or h2 ⊂ h1.
(ii) If h1 and h3 are HFMAO sets, then either h1 ∪ h3 = h1 or h1 = h3.

Proof. (i) Assume that h2 ̸⊂ h1. Clearly, h1 ⊂ (h1 ∪ h2) a contrary to h1 is a
HFMAO set if h1 ∪ h2 ̸= h1. Hence, h1 ∪ h2 = h1.
(ii) Let h1 and h3 are HFMAO sets. Then from(i) h3 ⊂ h1 and h1 ⊂ h3 implies
that h1 = h3. □

Theorem 4.4. If h1, h2 and h3 are HFMAO sets such that h1 ̸= h2 and (h1 ∩
h2) ⊂ h3, then either h1 = h3 or h2 = h3.

Proof. Suppose that h1, h2 and h3 are HFMAO sets with h1 ̸= h2 , (h1∩h2) ⊂ h3

and if h1 ̸= h3, then
(h2 ∩ h3) = h2 ∩ (h3 ∩ h1)
= h2 ∩ [h3 ∩ (h1 ∪ h2)], by lemma 4.3(ii)
= h2 ∩ [(h3 ∩ h1) ∪ (h3 ∩ h2)]
= [h2 ∩ h3 ∩ h1] ∪ [h2 ∩ h3 ∩ h2]
= [h2 ∩ h1] ∪ [h2 ∩ h3]
= h2 ∩ [h1 ∪ h3]
= h2 ∩ h1

= h2

(h2 ∩ h3) = h2 ⇒ h2 ⊂ h3. As h2 and h3 are HFMAO sets, h3 ⊂ h2. Hence
h2 = h3.

□

Theorem 4.5. For any distinct HFMAO sets h1, h2, h3

[h1 ∩ h2] ̸⊂ [h1 ∩ h3].

Proof. Consider [h1 ∩ h2] ⊂ [h1 ∩ h3] for any distinct HFMAO sets h1, h2 and
h3. Then
[h1 ∩ h2] ∪ [h2 ∩ h3] ⊂ [h1 ∩ h3] ∪ [h2 ∩ h3]
= [h1 ∪ h3] ∩ h2 ⊂ [h1 ∪ h2] ∩ h3

= h1 ∩ h2 ⊂ h1 ∩ h3

= h2 is contained in h3

a contradiction to h1, h2 and h3 are distinct . Hence [h1 ∩ h2] ̸⊂ [h1 ∩ h3]. □

Remark 4.1. Proofs of “Theorem 4.6, Corollary 4.7, Theorem 4.8 and Theorem
4.9” are similar to proofs of “Theorem 3.10, Corollary 3.11, Theorem 3.12 and
Theorem 3.9” respectively. Hence the proofs are omitted.
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Theorem 4.6. If hi is a HFMAO sets for any i ∈ M,M is a finite set and
hi ̸= hj for any distinct i, j ∈ M , then

(i)

[ ⋂
i∈M\{j}

hi

]c
⊂ hj for any j ∈ M

(ii)
⋂

i∈M\{j}
hi ̸= h0 for any j ∈ M .

Corollary 4.7. If hi is a HFMAO sets for any i ∈ M,M is a finite set and
hi ̸= hj for any distinct i, j ∈ M then,hi ∩ hj ̸= h0 for any distinct i, j ∈ M .

Theorem 4.8. If hi is a HFMAO sets for any i ∈ M,M is a finite set and

hi ̸= hj for any distinct i, j ∈ M , then hj =

[ ⋂
i∈M

hi

]
∪

[ ⋂
i∈M\{j}

hi

]c
for any

j ∈ M .

Theorem 4.9. If hi is a HFMAO sets for any i ∈ M,M is a finite set and
hi ̸= hj for any distinct i, j ∈ M and if K is a proper nonzero subset of M , then⋂
i∈M

hi ⫋
⋂

k∈K

hk.

Theorem 4.10. If hi is a HFMAO sets for any i ∈ M,M is a finite set and
hi ̸= hj for any distinct i, j ∈ M and if

⋂
i∈M

hi is a HFC set, then hj is a HFC

set for any j ∈ M .

Proof. By “Theorem 4.8”, we have hj =

[ ⋂
i∈M

hi

]
∪

[ ⋂
i∈M\{j}

hi

]c
for any j ∈ M .

hj =

[ ⋂
i∈M

hi

]
∪

[ ⋃
i∈M\{j}

hc
i

]
.

Since M is finite,
⋃

i∈M\{j}
hc
i is HFC. Hence hj is HFC for any j ∈ M . □

Theorem 4.11. If hi is a HFMAO set for any i ∈ M,M is a finite set and
hi ̸= hj for any distinct i, j ∈ M . If

⋂
i∈M

hi = h0,then {hi/i ∈ M} is the set of

all HFMAO sets of HFTS X.

Proof. Suppose that ∃ another HFMAO hk of a HFTS X such that hk ̸=
hi,∀i ∈ M . Clearly, h0 =

⋂
i∈M

hi =
⋂

i∈(M∪k)\{k}
hi ̸= h0, by Theorem 4.6(ii),

a contradiction.
Hence {hi/i ∈ M} is the family of all HFMAO sets of HFTS X. □
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