Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2019R1I1A3A01050861).
References
- S.H. An, R. Srivastava and N.E. Cho, New approaches for subordination and superordination of multivalent functions associated with a family of linear operators, preprint.
- S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446. https://doi.org/10.1090/S0002-9947-1969-0232920-2
- T. Bulboaca, Integral operators that preserve the subordination, Bull. Korean Math. Soc. 32 (1997), 627-636.
- T. Bulboaca, A class of superordination-preserving integral operators, Indag. Math. N. S. 13 (2002), 301-311. https://doi.org/10.1016/S0019-3577(02)80013-1
- N.E. Cho, Sushil Kumar, V. Kumar and V. Ravichandran, Differential subordination and radius estimates for starlike functions associated with the Booth lemniscate, Turkish. J. Math. 42 (2018), 1380-1399.
- N.E. Cho, Sushil Kumar, V. Kumar and V. Ravichandran, Starlike functions related to the Bell numbers, Symmetry, 11 (2019). doi:10.3390/sym11020219
- N.E. Cho and H.M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling 37 (2003), 39-49. https://doi.org/10.1016/S0895-7177(03)80004-3
- N.E. Cho and H.M. Srivastava, A class of nonlinear integral operators preserving subordination and superordination, Integral Transforms Spec. Funct. 18 (2007), 95-107. https://doi.org/10.1080/10652460601135342
- N.E. Cho, O.S. Kwon, S. Owa and H.M. Srivastava, A class of integral operators preserving subordination and superordination for meromorphic functions, Appl. Math. Comput. 193 (2007), 463-474.
- R.M. Goel and N.S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78 (1980), 353-357.
- I.B. Jung, Y.C. Kim and H.M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138-147. https://doi.org/10.1006/jmaa.1993.1204
- S.S. Kumar, V. Kumar and V. Ravichandran, Subordination and superordination for multivalent functions defined by linear operators, Tamsui Oxf. J. Inf. Math. Sci. 29 (2013), 361-387.
- R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758. https://doi.org/10.1090/S0002-9939-1965-0178131-2
- P.T. Mocanu, Une propriete de convexite generalisee dans la theorie de la representation conforme, Mathematica (Cluj) 11 (1969), 127-133.
- S.S. Miller and P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
- S.S. Miller and P.T. Mocanu, Differential Subordination, Theory and Applications, Marcel Dekker, Inc., New York, Basel, 2000.
- S.S. Miller and P.T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl. 48 (2003), 815-826.
- S.S. Miller, P.T. Mocanu and M.O. Reade, Subordination-preserving integral operators, Trans. Amer. Math. Soc. 283 (1984), 605-615. https://doi.org/10.1090/S0002-9947-1984-0737887-4
- S.S. Miller, P.T. Mocanu and M.O. Reade, Bazilevic functions and generalized convexity, Rev. Roumaine Math. Pures Appl. 19 (1974), 213-224.
- S. Owa and H.M. Srivastava, Some applications of the generalized Libera integral operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125-128.
- S. Owa and H.M. Srivastava, Some subordination theorems involving a certain family of integral operators, Integral Transforms Spec. Funct. 15 (2004), 445-454. https://doi.org/10.1080/10652460410001727563
- C. Pommerenke, Univalent functions, Vanderhoeck and Ruprecht, Gottingen, 1975.
- J.K. Prajapat and S.P. Goyal, Applications of Srivastava-Attiya operator to the class of strongly starlike and strongly convex functions, J. Math. Ineq. 3 (2009), 129-137. https://doi.org/10.7153/jmi-03-13
- G. Salagean, Subclasses of univalent functions, in Complex analysis-fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin.
- H.M. Srivastava and A.A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integral Transforms Spec. Funct. 18 (2007), 207-216. https://doi.org/10.1080/10652460701208577
- H.M. Srivastava, S. Hussain, A. Raziq and M. Raza, The Fekete-Szego functional for a subclass of analytic functions associated with quasi-subordination, Carpathian J. Math. 34 (2018), 103-113. https://doi.org/10.37193/CJM.2018.01.11
- H.M. Srivastava, A.O. Mostafa, M.K. Aouf and H.M. Zayed, Basic and fractional q-calculus and associated Fekete-Szego problem for p-valently q-starlike functions and p-valently q-convex functions of complex order, Miskolc Math. Notes 20 (2019), 489-509. https://doi.org/10.18514/MMN.2019.2405
- H.M. Srivastava and S. Owa (Editors), Current topics in analytic function theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.
- H.M. Srivastava, A. Prajapati and P. Gochhayat, Third-order differential subordination and differential superordination results for analytic functions involving the Srivastava-Attiya operator, Appl. Math. Inform. Sci. 12 (2018), 469-481. https://doi.org/10.18576/amis/120301
- H.M. Srivastava, D. Raducanu and P. Zaprawa, A certain subclass of analytic functions defined by means of differential subordination, Filomat 30 (2016), 3743-3757. https://doi.org/10.2298/FIL1614743S
- H. Tang, H.M. Srivastava and G.-T. Deng, Some families of analytic functions in the upper half-plane and their associated differential subordination and differential superordination properties and problems, Appl. Math. Inform. Sci. 11 (2017), 1247-1257. https://doi.org/10.18576/amis/110502
- H. Tang, H.M. Srivastava, G.-T. Deng and S.-H. Li, Second-order differential superordination for analytic functions in the upper half-plane, J. Nonlinear Sci. Appl. 10 (2017), 5271-5280. https://doi.org/10.22436/jnsa.010.10.13
- B.A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, Current Topics in Analytic Function Theory, pp. 371-374, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.
- Q.-H. Xu, H.-G. Xiao and H.M. Srivastava, Some applications of differential subordination and the Dziok-Srivastava convolution operator, Appl. Math. Comput. 230 (2014), 496-508.