DOI QR코드

DOI QR Code

BOUNDS ON THE GROWTH RATE FOR THE KUO PROBLEM

  • S. LAVANYA (Department of Mathematics, Koneru Lakshmaiah Education Foundation) ;
  • V. GANESH (Engineering Department, University of Technology and Applied Sciences) ;
  • G. VENKATA RAMANA REDDY (Department of Mathematics, Koneru Lakshmaiah Education Foundation)
  • Received : 2022.06.06
  • Accepted : 2022.09.30
  • Published : 2023.03.30

Abstract

We consider Kuo problem of hydrodynamic stability which deals with incompressible, inviscid, parallel shear flows in the 𝛽-plane. For this problem, we derived instability region without any approximations and which intersects with Howard semi-circle region under certain condition. Also, we derived upper bound for growth rate and amplification factor of an unstable mode and proved Howard's conjecture.

Keywords

Acknowledgement

The author's are thankful to reviewer for valuable suggestion to improve the manuscript.

References

  1. M.B. Banerjee, J.R. Gupta, and M. Subbiah, On reducing Howard's semi-circle for homogeneous shear flows, J. Math. Anal. Appl. 130 (1988), 398-402. https://doi.org/10.1016/0022-247X(88)90315-0
  2. M.B. Banerjee, R.G. Shandil, Vinay kanwar, A proof of Howard's Conjecture in homogeneous parallel shear flow, Proc. Indian Acad. Sci. (Math Sci.) 104 (1994), 593-595. https://doi.org/10.1007/BF02867123
  3. M.B. Banerjee, R.G. Shandil, Jyoti Prakash, Balraj Singh Bandral and Prem Lal, On Howard's Conjecture in heterogeneous shear flow instability of Modified s-waves, Indian J. Pure App. Math. 28 (1997), 825-830.
  4. V. Ganesh, M. Subbiah, On Upper bounds for the growth rate in the extended Taylor-Goldstein Problem of hydrodynamic stability, Proc. Indian Acad. Sci.(Math. Sci.) 119 (2009), 119-135. https://doi.org/10.1007/s12044-009-0012-5
  5. J.R. Gupta, R.G. Shandil, S.D. Rana, On the limitations of the complex wave velocity in the instability problem of heterogeneous shear flows, J. Math. Anal. Appl. 144 (1989), 367-376. https://doi.org/10.1016/0022-247X(89)90341-7
  6. F.J. Hickernell, An upper bound on the growth rate of a linear instability in a homogeneous shear flow, Stud. in Appl. Math. 72 (1985), 87-93. https://doi.org/10.1002/sapm198572187
  7. L.N. Howard, Note on a paper of John, W. Miles, J. Fluid Mech. 10 (1961), 509.
  8. H.L. Kuo, Dynamic instability of two-dimensional non-divergent flow in a barotropic atmosphere, Journal of Metereology 6 (1949), 105-122. https://doi.org/10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2
  9. M. Padmini, M. Subbiah, Note on Kuo's problem, J. Math. Anal. Appl. 173 (1993), 659-665. https://doi.org/10.1006/jmaa.1993.1097
  10. J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlog, New York, Berlin, 1979.
  11. L.J. Pratt, H.E. Deese, S.P. Murray and W. Johnes, Continuous dynamical modes in straits having arbitrary cross section with application to the Bab al Mandab, J. Physical Oceanography 30 (2000), 2515-2534.
  12. D.H. Sattinger, On the Rayleigh Problem in hydrodynamic stability, SIAM J. Appl. Math. 15 (1967), 419.
  13. R.G. Shandil, Linear Instability of Inviscid Incompressible zonal flows on a β-Plane, Ganita 51 (2000), 165-168.
  14. R.G. Shandil, Jagjith Singh, On Howard's Conjecture in heterogeneous Shear flow Problem, Proc. Indian Acad. Sci. (Math.Sci.) 113 (2003), 451-456. https://doi.org/10.1007/BF02829636
  15. B.K. Shivamoggi, David. K. Rollini, Linear stability theory of zonal shear flows with a free surface, Geophys. Astrophys. Fluid Dynamics 95 (2001), 31-53. https://doi.org/10.1080/03091920108203413
  16. M. Subbiah, V. Ganesh, Bounds on the phase speed and growth rate of the extended Taylor Goldstein Problem, Fluid Dynamic Research 40 (2008), 364-377. https://doi.org/10.1016/j.fluiddyn.2007.11.001
  17. R. Thenmozhy, N. Vijayan, On the Linear Stability of Shear Flows in the β-Plane, International Journal of Mathematics Trends and Technology 66 (2020), 10-16.
  18. Vinay Kanwar, A.K. Sinha, A new upper bound on the growth rate of linear instability of baroclinic zonal flows in the two-layer model on a β-Plane, Phys. Fluids 11 (1999), 2925-2927. https://doi.org/10.1063/1.870150