References
- P. Aiena, Fredholm and local spectral theory, with application to multipliers, Kluwer Acad. Publishers, 2004.
- P. Aiena and Muller, The localized single-valued extension propertry and Riesz operators, Proc. Amer. Math. Soc. 143 (2015), 2051-2055. https://doi.org/10.1090/S0002-9939-2014-12404-X
- P. Aiena, M.L. Colasante, M. Gonzalez, Operators which have a closed quasi-nilpotent part, Proc. Amer. Math. Soc. 130 (2002), 2701-2710. https://doi.org/10.1090/S0002-9939-02-06386-4
- P. Aiena, T.L. Miller, and M.M. Neumann, On a localized single-valued extension property, Math. Proc. Royal Irish. Acad. 104A (2004), 17-34. https://doi.org/10.1353/mpr.2004.0016
- P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), 435-448. https://doi.org/10.1006/jmaa.2000.6966
- P. Aiena and M.M. Neumann, On the stability of the localized single-valued extension property under commuting perturbations, Proc. Amer. Soc. 141 (2013), 2039-2050. https://doi.org/10.1090/S0002-9939-2013-11635-7
- E. Albrecht and J. Eschmeier, Analytic fuctional models and local spectral theory, Proc. London Math. Soc. 3 75 (1997), 323-348
- E. Albrecht, J. Eschmeier and M.M. Neumann, Some topics in the theory of decomposable operators In: Advances in invariant subspaces and other results of Operator Theory: Advances and Applications, Birkhauser Verlag, Basel 17 (1986), 15-34.
- J. Bracic and V. Muller, On bounded local resolvents, Int. Eq. Operator Theory 55 (2006), 477-486. https://doi.org/10.1007/s00020-005-1402-4
- I. Colojoara and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
- H.R. Dowson, Spectral theory of linear operators, Academic Press, London, 1978.
- N. Dunford, Spectral theory II. Resolution of the identity, Pacific J. Math. 2 (1952), 559-614. https://doi.org/10.2140/pjm.1952.2.559
- N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. https://doi.org/10.2140/pjm.1954.4.321
- N. Dunford and J.T. Schwartz, Linear operators, Part III: Specral operators, Wiley, New York, 1971.
- I. Erdelyi and R. Lange, Spectral decompositions on Banach spaces, Lecture Notes in Mathematics, No. 623, Springer-Verlag, New York, 1977.
- J. Eschmeier, K.B. Laursen and M.M. Neumann, Multipliers with natural local spectra on commutative Banach algebras, J. Functional Analysis 138 (1996), 273-294. https://doi.org/10.1006/jfan.1996.0065
- J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69. https://doi.org/10.2140/pjm.1975.58.61
- J. Eschmeier and B. Prunaru, Invariant subspaces and localizable spectrum, Int. Eq. Operator Theory 42 (2002), 461-471. https://doi.org/10.1007/BF01270923
- C. Foias, Spectral maximal spaces and decomposable operators in Banach spaces, Arch. Math. 14 (1963), 341-349. https://doi.org/10.1007/BF01234965
- W. Gong and L. Wang, Mbekhta's subspaces and a spectral theory of compact operators, Proc. Amer. Math. Soc. 131 (2002), 587-592. https://doi.org/10.1090/S0002-9939-02-06639-X
- H.G. Heuser, Functional analysis, John Sons Ltd., Chichester, 1982.
- K.B. Laursen and M.M. Neumann, Asymptotic intertwining and spectral inclusions on Banach spaces, Czech. Math. J. 43 (1993), 483-497. https://doi.org/10.21136/CMJ.1993.128413
- K.B. Laursen and M.M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford Science Publications, Oxford, 2000.
- T.L. Miller and V.G. Miller, and M.M. Neumann, On operators with closed analytic core, Rend. Circ. Mat. Palermo 51 (2002), 483-497.
- M. Mbekhta, Sur la th'eorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
- M. Oudghiri, Weyl's theorem and perturbations, Int. Eq. Operator Theory 53 (2005), 535-545. https://doi.org/10.1007/s00020-004-1342-4
- V. Rakocevic, Semi-Borwder operators and perturbations, Studia Math. 122 (1997), 131-137. https://doi.org/10.4064/sm-122-2-131-137
- H. Schechter and R. Whitley, Best Fredholm perturbation theorem, Studia Math. 90 (1980), 175-190. https://doi.org/10.4064/sm-90-3-175-190
- P. Vrbova, On local spectral properties of operators in Banach spaces, Czechoslovak. Math. J. 23 (1973), 483-492. https://doi.org/10.21136/CMJ.1973.101189
- J.-K. Yoo, Local spectral theory and quasinilpotent operators, J. Appl. Math. & Informatics 40 (2022), 785-794.