DOI QR코드

DOI QR Code

An Insight Into the Recycling of Waste Flexible Polyurethane Foam Using Glycolysis

  • Woo Seok Jin (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Pranabesh Sahu (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Gyuri Kim (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Seongrok Jeong (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Cheon Young Jeon (R&D Center, KPX Chemical Co. Ltd.) ;
  • Tae Gyu Lee (R&D Center, KPX Chemical Co. Ltd.) ;
  • Sang Ho Lee (R&D Center, KPX Chemical Co. Ltd.) ;
  • Jeong Seok Oh (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
  • Received : 2023.02.14
  • Accepted : 2023.02.27
  • Published : 2023.03.31

Abstract

The worldwide use of polyurethane foam products generates large amounts of waste, which in turn has detrimental effects on the surroundings. Hence, finding an economical and environmentally friendly way to dispose of or recycle foam waste is an utmost priority for researchers to overcome this problem. In that sense, the glycolysis of waste flexible polyurethane foam (WFPF) from automotive seat cushions using different industrial-grade glycols and potassium hydroxide as a catalyst to produce recovered polyol was investigated. The effect of different molecular weight polyols, catalyst concentration, and material ratio (PU foam: Glycols) on the reaction conversion and viscosity of the recovered polyols was determined. The obtained recovered polyols are obtained as single or split-phase reaction products. Besides, the foaming characteristics and physical properties such as cell morphology, thermal stability, and compressive stress-strain nature of the regenerated flexible foams based on the recovered polyols were discussed. It was observed that the regenerated flexible foams displayed good seating comfort properties as a function of hardness, sag factor, and hysteresis loss compared to the reference virgin foam. With the growing demand for a sustainable and circular economy, a global valorization of glycolysis products from polyurethane scraps can be realized by transforming them into profitable substances.

Keywords

Acknowledgement

This work was supported by the Development Fund Foundation of Gyeongsang National University, 2020.

References

  1. N. V. Gama and A. Ferreira, "Barros-Timmons, A. Polyurethane Foams: Past, Present, and Future", Material, 11, 1841 (2018).
  2. D. Simon, A. M. Borreguero, A. de Lucas, and J. F. Rodriguez, "Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability", Waste Manag., 76, 147 (2018).
  3. R. V. Gadhave, S. Srivastava, P. A. Mahanwar, and P. T. Gadekar, "Recycling and Disposal Methods for Polyurethane Wastes: A Review", Open J. Polym. Chem., 09, 39 (2019).
  4. J. Datta and P. Kopczynska, "From polymer waste to potential main industrial products: Actual state of recycling and recovering", Crit. Rev. Environ. Sci. Technol., 46, 905 (2016).
  5. D. Simon, A. M. Borreguero, A. de Lucas, and J. F. Rodriguez, "Glycolysis of flexible polyurethane wastes containing polymeric polyols", Polym. Degrad. Stabil., 109, 115 (2014).
  6. J. Borda, G. Pasztor, and M. Zsuga, "Glycolysis of polyurethane foams and elastomers", Polym. Degrad. Stab., 68, 419 (2000).
  7. C. Molero, A. de Lucas, and J. F. Rodriguez, "Recovery of polyols from flexible polyurethane foam by "split-phase" glycolysis with new catalysts", Polym. Degrad. Stab., 91, 894 (2006).
  8. M. Grdaolnik, A. Drincic, A. Ore ki, O. C. Onder, P. Utro a, D. Pahovnik, and E. Zagar, "Insight into Chemical Recycling of Flexible Polyurethane Foams by Acidolysis", ACS Sustainable Chem. Eng., 10, 1323 (2022).
  9. N. V. Gama, B. Godinho, G. Marques, R. Silva, A. Barros-Timmons, and A. Ferreira, "Recycling of polyurethane scraps via acidolysis", Chem. Eng. J., 395, 125102 (2020).
  10. N. V. Gama, B. Godinho, G. Marques, R. Silva, A. Barros-Timmons, and A. Ferreira, "Recycling of polyurethane by acidolysis: The effect of reaction conditions on the properties of the recovered polyol", Polymer, 219, 123561 (2021).
  11. G. A. Campbell and W. C. Meluch, "Polyurethane foam recycling. Superheated steam hydrolysis", Environ. Sci. Technol., 10, 182 (1976).
  12. Y. W. Wang, "Recycling of polyurethane foam for automobile by alcoholysis", Zhejiang Chemical Industry, 30, 58 (1999).
  13. K. Kanaya and S. Takahashi "Decomposition of polyurethane foams by alkanolamines", J. Appl. Polym. Sci., 51, 675 (1994).
  14. S. Chuayjuljit, C. Norakankorn, and V. Pimpan, "Chemical Recycling of Rigid Polyurethane Foam Scrap via Base Catalyzed Aminolysis", J. Met., Mater. Miner., 12, 19 (2002).
  15. R. Heiran, A. Ghaderian, A. Reghunadhan, F. Sedaghati, S. Thomas, and Haghighi, "A. Glycolysis: an efficient route for recycling of end of life polyurethane foams", J. Polym. Res., 22, 28 (2021).
  16. C. Molero, A. de Lucas, F. Romero, and J. F. Rodriguez, "Influence of the use of recycled polyols obtained by glycolysis on the preparation and physical properties of flexible polyurethane", J. Appl. Polym. Sci., 109, 617 (2008).
  17. D. Simon, A. de Lucas, J. F. Rodriguez, and A. M. Borreguero, "Flexible polyurethane foams synthesized employing recovered polyols from glycolysis: Physical and structural properties", J. Appl. Polym. Sci., 134, 45087 (2017).
  18. H. Benes, J. Rosner, P. Holler, H. Synkova, J. Kotek, and Z. Horak, "Glycolysis of flexible polyurethane foam in recycling of car seats", Polym. Adv. Technol., 18, 149 (2007).
  19. D. Simon, A. M. Borreguero, A. de Lucas, and J. F. Rodriguez, "Glycolysis of viscoelastic flexible polyurethane foam wastes", Polym. Degrad. Stabil., 116, 23 (2015).
  20. C. H. Wu, C. Y. Chang, C. M. Cheng, and H. C. Huang, "Glycolysis of waste flexible polyurethane foam", Polym. Degrad. Stab., 80, 103 (2003).
  21. C. Molero, A. de Lucas, and J. F. Rodriguez, "Recovery of polyols from flexible polyurethane foam by "split-phase" glycolysis: study on the influence of reaction parameters", Polym. Degrad. Stabil., 93, 353 (2008).
  22. M. M. A. Nikje and M. J. Nikrah, "Chemical Recycling and Liquefaction of Rigid Polyurethane Foam Wastes through Microwave Assisted Glycolysis Process", Macromol. Sci., Part A: Pure Appl. Chem., 44, 613 (2007).
  23. N. Kraitape and C. Thongpin, "Influence of Recycled Polyurethane Polyol on the Properties of Flexible Polyurethane Foams", Energy Procedia, 89, 186 (2016).
  24. J. Moon, S. B. Kwak, J. Y. Lee, D. Kim, J. U. Ha, and J. S. Oh, "Synthesis of polyurethane foam from ultrasonically decrosslinked automotive seat cushions", Waste Manag., 85, 557 (2019).
  25. J. Moon, T. K. Sinha, S. B. Kwak, J. U. Ha, and J. S. Oh, "Study on Seating Comfort of Polyurethane Multilayer Seat Cushions", International Journal of Automotive Technology, 21, 1089 (2020).