DOI QR코드

DOI QR Code

전산해석을 통한 전대뇌동맥류 코일 색전술 후 혈류 유동 분석

Analysis of Blood Flow after Coil Embolization in Anterior Cerebral Artery Aneurysm

  • Donghwi Kim (School of Mechanical Engineering, Pusan National University) ;
  • Jeonghoon Yoon (School of Mechanical Engineering, Pusan National University) ;
  • Changyong Lee (School of Mechanical Engineering, Pusan National University) ;
  • Junwoo Jae (School of Mechanical Engineering, Pusan National University) ;
  • Dongmin Kim (School of Mechanical Engineering, Pusan National University) ;
  • Youngoh Bae (School of Mechanical Engineering, Pusan National University) ;
  • Jinyul Hwang (School of Mechanical Engineering, Pusan National University)
  • 투고 : 2023.02.24
  • 심사 : 2023.03.22
  • 발행 : 2023.03.31

초록

We performed numerical simulations of blood flow in an arterial cerebral artery aneurysm to investigate the hemodynamic behavior after coil embolization. A patient-specific model was created based on CTA data. We also conducted the coil embolization simulation to obtain the coil placement within the aneurysm. Blood was assumed to be an incompressible Newtonian fluid, and both the vessel and coil were considered rigid walls. The pulsatile boundary condition was applied at the inlet, and the outflow boundary conditions were used at the outlets. Our findings demonstrated that the coil embolization significantly reduces the blood volume flowrate entering the aneurysm by effectively blocking the inflow jet, leading to a decrease in both TAWSS and WSS, especially at the systolic peak in the impingement zone. While several high OSI regions disappeared over the aneurysm surface, we observed high OSI regions with a relatively small area where the coil did not completely occlude the aneurysm. Overall, these results quantitatively analyzed the effectiveness of coil embolization by focusing on hemodynamic indicators, potentially preventing aneurysm rupture. The present work could contribute to the development of patient-specific coil embolization.

키워드

과제정보

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Grant No. 2020R1F1A1048537) and supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20214000000140)

참고문헌

  1. Brisman, J. L., Song, J. K. and Newell, D. W., 2006, "Cerebral aneurysms," New England journal of medicine, Vol. 355(9), pp. 928-939. https://doi.org/10.1056/NEJMra052760
  2. Wiebers, D. O. and Investigators, I. S. o. U. I. A., 2003, "Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment," The Lancet, Vol. 362(9378), pp. 103-110. https://doi.org/10.1016/S0140-6736(03)13860-3
  3. Chalouhi, N., Hoh, B. L. and Hasan, D., 2013, "Review of cerebral aneurysm formation, growth, and rupture," Stroke, Vol. 44(12), pp. 3613-3622. https://doi.org/10.1161/STROKEAHA.113.002390
  4. Backes, D., Rinkel, G. J., Laban, K. G., Algra, A. and Vergouwen, M. D., 2016, "Patient-and aneurysm-specific risk factors for intracranial aneurysm growth: a systematic review and meta-analysis," Stroke, Vol. 47(4), pp. 951-957. https://doi.org/10.1161/STROKEAHA.115.012162
  5. Etminan, N., Buchholz, B. A., Dreier, R., Bruckner, P., Torner, J. C., Steiger, H.-J., Hanggi, D. and Macdonald, R. L., 2014, "Cerebral aneurysms: formation, progression, and developmental chronology," Translational stroke research, Vol. 5(2), pp. 167-173. https://doi.org/10.1007/s12975-013-0294-x
  6. Lin, N., Cahill, K. S., Frerichs, K. U., Friedlander, R. M. and Claus, E. B., 2018, "Treatment of ruptured and unruptured cerebral aneurysms in the USA: a paradigm shift," Journal of neurointerventional surgery, Vol. 10(Suppl 1), pp. i69-i76. https://doi.org/10.1136/jnis.2011.004978.rep
  7. Brilstra, E. H., Rinkel, G. J., van der Graaf, Y., van Rooij, W. J. J. and Algra, A., 1999, "Treatment of intracranial aneurysms by embolization with coils: a systematic review," Stroke, Vol. 30(2), pp. 470-476. https://doi.org/10.1161/01.STR.30.2.470
  8. Baharoglu, M. I., Schirmer, C. M., Hoit, D. A., Gao, B.-L. and Malek, A. M., 2010, "Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms: morphometric and computational fluid dynamic analysis," Stroke, Vol. 41(7), pp. 1423-1430. https://doi.org/10.1161/STROKEAHA.109.570770
  9. Nader-Sepahi, A., Casimiro, M., Sen, J. and Kitchen, N. D., 2004, "Is aspect ratio a reliable predictor of intracranial aneurysm rupture?," Neurosurgery, Vol. 54(6), pp. 1343-1348. https://doi.org/10.1227/01.NEU.0000124482.03676.8B
  10. ORZ, S. K., M. OSAWA and Y. TANAKA, Y., 1997, "Aneurysm size: a prognostic factor for rupture," British journal of neurosurgery, Vol. 11(2), pp. 144-149. https://doi.org/10.1080/02688699746500
  11. Xiang, J., Tutino, V., Snyder, K. and Meng, H., 2014, "CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment," American Journal of Neuroradiology, Vol. 35(10), pp. 1849-1857. https://doi.org/10.3174/ajnr.A3710
  12. Jou, L.-D., Lee, D. H., Morsi, H. and Mawad, M. E., 2008, "Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery," American Journal of Neuroradiology, Vol. 29(9), pp. 1761-1767. https://doi.org/10.3174/ajnr.A1180
  13. Can, A. and Du, R., 2016, "Association of hemodynamic factors with intracranial aneurysm formation and rupture: systematic review and meta-analysis," Neurosurgery, Vol. 78(4), pp. 510-520. https://doi.org/10.1227/NEU.0000000000001083
  14. Guk, Y., Kwon, T., Moon, S., Kim, D., Hwang, J. and Bae, Y., 2022, "Evolution of Low Wall-Shear Stress Area in Anterior Communicating Artery Aneurysm," Journal of the Korean Society of Visualization, Vol. 20(2), pp. 45-54. https://doi.org/10.5407/JKSV.2022.20.2.045
  15. Kim, D., Hwang, J., Min, T.-J. and Jo, W.-M., 2022, "Numerical Analysis of Transitional Flow in a Stenosed Carotid Artery," Journal of the Korean Society of Visualization, Vol. 20(1), pp. 52-63. https://doi.org/10.5407/JKSV.2022.20.1.052
  16. Le, T. B., Troolin, D. R., Amatya, D., Longmire, E. K. and Sotiropoulos, F., 2013, "Vortex phenomena in sidewall aneurysm hemodynamics: experiment and numerical simulation," Annals of biomedical engineering, Vol. 41(10), pp. 2157-2170. https://doi.org/10.1007/s10439-013-0811-9
  17. Saqr, K. M., Rashad, S., Tupin, S., Niizuma, K., Hassan, T., Tominaga, T. and Ohta, M., 2020, "What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review," Journal of Cerebral Blood Flow & Metabolism, Vol. 40(5), pp. 1021-1039. https://doi.org/10.1177/0271678X19854640
  18. Le, T. B., Borazjani, I. and Sotiropoulos, F., 2010, "Pulsatile flow effects on the hemodynamics of intracranial aneurysms," Journal of biomechanical engineering, Vol. 132(11), pp. 1-11. https://doi.org/10.1115/1.4002702
  19. Liu, J., Jing, L., Wang, C., Paliwal, N., Wang, S., Zhang, Y., Xiang, J., Siddiqui, A. H., Meng, H. and Yang, X., 2016, "Effect of hemodynamics on outcome of subtotally occluded paraclinoid aneurysms after stent-assisted coil embolization," Journal of neurointerventional surgery, Vol. 8(11), pp. 1140-1147. https://doi.org/10.1136/neurintsurg-2015-012050
  20. Kakalis, N. M., Mitsos, A. P., Byrne, J. V. and Ventikos, Y., 2008, "The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment," IEEE transactions on medical imaging, Vol. 27(6), pp. 814-824. https://doi.org/10.1109/TMI.2008.915549
  21. Babiker, M. H., Chong, B., Gonzalez, L. F., Cheema, S. and Frakes, D. H., 2013, "Finite element modeling of embolic coil deployment: multifactor characterization of treatment effects on cerebral aneurysm hemodynamics," Journal of biomechanics, Vol. 46(16), pp. 2809-2816. https://doi.org/10.1016/j.jbiomech.2013.08.021
  22. Fujimura, S., Takao, H., Suzuki, T., Dahmani, C., Ishibashi, T., Mamori, H., Yamamoto, M. and Murayama, Y., 2018, "Hemodynamics and coil distribution with changing coil stiffness and length in intracranial aneurysms," Journal of neurointerventional surgery, Vol. 10(8), pp. 797-801. https://doi.org/10.1136/neurintsurg-2017-013457
  23. Takeuchi, S. and Karino, T., 2010, "Flow patterns and distributions of fluid velocity and wall shear stress in the human internal carotid and middle cerebral arteries," World neurosurgery, Vol. 73(3), pp. 174-185. https://doi.org/10.1016/j.surneu.2009.03.030
  24. Fujimura, S., Takao, H., Suzuki, T., Dahmani, C., Mamori, H., Fukushima, N., Yamamoto, M. and Murayama, Y., 2017, "Effect of catheter positions on hemodynamics and coil formation after coil embolization," 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3397-3400.
  25. Sluzewski, M., Van Rooij, W. J., Beute, G. N. and Nijssen, P. C., 2006, "Balloon-assisted coil embolization of intracranial aneurysms: incidence, complications, and angiography results," Journal of neurosurgery, Vol. 105(3), pp. 396-399. https://doi.org/10.3171/jns.2006.105.3.396
  26. Xiang, J., Natarajan, S. K., Tremmel, M., Ma, D., Mocco, J., Hopkins, L. N., Siddiqui, A. H., Levy, E. I. and Meng, H., 2011, "Hemodynamic-morphologic discriminants for intracranial aneurysm rupture," Stroke, Vol. 42(1), pp. 144-152. https://doi.org/10.1161/STROKEAHA.110.592923
  27. Cebral, J. R., Castro, M. A., Burgess, J. E., Pergolizzi, R. S., Sheridan, M. J. and Putman, C. M., 2005, "Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models," American Journal of Neuroradiology, Vol. 26(10), pp. 2550-2559.
  28. Karmonik, C., Klucznik, R. and Benndorf, G., 2008, "Comparison of velocity patterns in an AComA aneurysm measured with 2D phase contrast MRI and simulated with CFD," Technology and Health Care, Vol. 16(2), pp. 119-128. https://doi.org/10.3233/THC-2008-16206
  29. Karmonik, C., Yen, C., Diaz, O., Klucznik, R., Grossman, R. G. and Benndorf, G., 2010, "Temporal variations of wall shear stress parameters in intracranial aneurysms-importance of patient-specific inflow waveforms for CFD calculations," Acta neurochirurgica, Vol. 152(8), pp. 1391-1398. https://doi.org/10.1007/s00701-010-0647-0
  30. Steinman, D. A., Thomas, J. B., Ladak, H. M., Milner, J. S., Rutt, B. K. and Spence, J. D., 2002, "Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI," Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, Vol. 47(1), pp. 149-159. https://doi.org/10.1002/mrm.10025
  31. Lopes, D., Puga, H., Teixeira, J. C. and Teixeira, S., 2019, "Influence of arterial mechanical properties on carotid blood flow: Comparison of CFD and FSI studies," International Journal of Mechanical Sciences, Vol. 160(-), pp. 209-218. https://doi.org/10.1016/j.ijmecsci.2019.06.029
  32. Valen-Sendstad, K., Mardal, K.-A., Mortensen, M., Reif, B. A. P. and Langtangen, H. P., 2011, "Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm," Journal of biomechanics, Vol. 44(16), pp. 2826-2832. https://doi.org/10.1016/j.jbiomech.2011.08.015
  33. Zarrinkoob, L., Ambarki, K., Wahlin, A., Birgander, R., Eklund, A. and Malm, J., 2015, "Blood flow distribution in cerebral arteries," Journal of Cerebral Blood Flow & Metabolism, Vol. 35(4), pp. 648-654. https://doi.org/10.1038/jcbfm.2014.241
  34. Zhao, M., Amin-Hanjani, S., Ruland, S., Curcio, A., Ostergren, L. and Charbel, F., 2007, "Regional cerebral blood flow using quantitative MR angiography," American Journal of Neuroradiology, Vol. 28(8), pp. 1470-1473. https://doi.org/10.3174/ajnr.A0582
  35. Omodaka, S., Sugiyama, S.-i., Inoue, T., Funamoto, K., Fujimura, M., Shimizu, H., Hayase, T., Takahashi, A. and Tominaga, T., 2012, "Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis," Cerebrovascular Diseases, Vol. 34(2), pp. 121-129. https://doi.org/10.1159/000339678
  36. Shojima, M., Oshima, M., Takagi, K., Torii, R., Hayakawa, M., Katada, K., Morita, A. and Kirino, T., 2004, "Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms," Stroke, Vol. 35(11), pp. 2500-2505. https://doi.org/10.1161/01.STR.0000144648.89172.0f
  37. Fukazawa, K., Ishida, F., Umeda, Y., Miura, Y., Shimosaka, S., Matsushima, S., Taki, W. and Suzuki, H., 2015, "Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points," World neurosurgery, Vol. 83(1), pp. 80-86. https://doi.org/10.1016/j.wneu.2013.02.012
  38. Lee, S.-W. and Steinman, D. A., 2007, "On the relative importance of rheology for image-based CFD models of the carotid bifurcation," Vol. 129(2), pp. 273-278. https://doi.org/10.1115/1.2540836
  39. Campbell, I. C., Ries, J., Dhawan, S. S., Quyyumi, A. A., Taylor, W. R. and Oshinski, J. N., 2012, "Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation," Journal of biomechanical engineering, Vol. 134(5),
  40. Takao, H., Murayama, Y., Otsuka, S., Qian, Y., Mohamed, A., Masuda, S., Yamamoto, M. and Abe, T., 2012, "Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation," Stroke, Vol. 43(5), pp. 1436-1439. https://doi.org/10.1161/STROKEAHA.111.640995
  41. Castro, M., Putman, C., Sheridan, M. and Cebral, J., 2009, "Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture," American Journal of Neuroradiology, Vol. 30(2), pp. 297-302. https://doi.org/10.3174/ajnr.A1323
  42. Kawaguchi, T., Nishimura, S., Kanamori, M., Takazawa, H., Omodaka, S., Sato, K., Maeda, N., Yokoyama, Y., Midorikawa, H. and Sasaki, T., 2012, "Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs," Journal of neurosurgery, Vol. 117(4), pp. 774-780. https://doi.org/10.3171/2012.7.JNS111991
  43. Sugiyama, S.-I., Meng, H., Funamoto, K., Inoue, T., Fujimura, M., Nakayama, T., Omodaka, S., Shimizu, H., Takahashi, A. and Tominaga, T., 2012, "Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery," World neurosurgery, Vol. 78(5), pp. 462-468. https://doi.org/10.1016/j.wneu.2011.09.023
  44. Zhang, Y., Jing, L., Zhang, Y., Liu, J. and Yang, X., 2016, "Low wall shear stress is associated with the rupture of intracranial aneurysm with known rupture point: case report and literature review," BMC neurology, Vol. 16(1), pp. 1-4. https://doi.org/10.1186/s12883-015-0524-9