DOI QR코드

DOI QR Code

튜브 직경에 따른 과냉각 유동 내 단일 기포 응축의 영향

Effect of a Tube Diameter on Single Bubble Condensation in Subcooled Flow

  • 투고 : 2022.10.31
  • 심사 : 2023.02.01
  • 발행 : 2023.03.31

초록

Bubble condensation, which involves the interaction of bubbles within the subcooled liquid flow, plays an important role in the effective control of thermal devices. In this study, numerical simulations are performed using a VOF (Volume of Fluid) model to investigate the effect of tube diameter on bubble condensation. As the tube diameter decreases, condensation bubbles persist for a long time and disappear at a higher position. It is observed that for small tube diameters, the heat transfer coefficients of condensation bubbles, which is a quantitative parameter of condensation rate, are smaller than those for large tube diameters. When the tube diameter is small, the subcooled liquid around the condensing bubble is locally participated in the condensation of the bubble to fill the reduced volume of the bubble due to the generation of a backflow in the narrow space between the bubble and the wall, so that the heat transfer coefficient decreases.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(NRF-2019R1A2C1083858, NRF-2022R1I1A205486511).

참고문헌

  1. Chorin, A. J., 1997, "A numerical method for solving incompressible viscous flow problems," J. Comput. Phys., Vol. 135, pp.118~125. https://doi.org/10.1006/jcph.1997.5716
  2. Ha, C. T. and Lee, J. H., 2020, "A modified monotonicity preserving high-order scheme with application to computation of multi-phase flows," Comput. Fluids., Vol. 197, 104345.
  3. Jeon, S.-S., Kim, S.-J., Park, G.-C., "Numerical study of condensing bubble in subcooled boiling flow using volume of fluid model," Chem. Eng. Sce., 66, pp. 5899~5909.
  4. Kalman, H. and Mori, Y.H., 2002, "Experimental analysis of a single vapor bubble condensing in subcooled liquid," Chem. Eng. J., 85, pp. 197~206. https://doi.org/10.1016/S1385-8947(01)00150-4
  5. Kim, S.-J. and Park, G.-C., 2011, "Interfacial heat transfer of condensing bubble in subcooled boiling flow at low pressure," Int. J. Heat and Mass Trans., 54, pp. 2962~2974. https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.001
  6. Kumar, P. and Vanka, S.P., 2015, "Effects of confinement on bubble dynamics in a square duct," Int. J. Multiphase Flow, 77, pp. 32~47. https://doi.org/10.1016/j.ijmultiphaseflow.2015.06.014
  7. Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., and Govindan, T. R., 2000, "A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction," Comput. Fluids., Vol. 29, 849.
  8. Lee, W. H., 1980, "A pressure iteration scheme for two-phase flow modeling," Multiph. Transp. Fundam. React. Saf. Appl. 1 pp. 407~431.
  9. Mukundakrishnan, K., Quan, S., Eckmann, D. M., Ayyaswamy, P. S., 2007, "Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder," Phys. Rev. E, 76, 036308.
  10. Pan, L.-M., Tan, Z.-W., Chen, D.-Q., Xue, L.-C., 2012, "Numerical investigation of vapor bubble condensation characteristics of subcooled flow boiling in vertical rectangular channel," Nucl. Eng. Design, 248, pp. 126~136. https://doi.org/10.1016/j.nucengdes.2012.04.001
  11. Tian, W., Ishiwatari, Y., Ikejiri, S., Yamakawa, M., Oka, Y., 2010, "Numerical computation of thermally controlled steam bubble condensation using Moving Particle Semi-implicit (MPS) method," Ann. Nuclear Energy, 37, pp. 5~15 https://doi.org/10.1016/j.anucene.2009.10.011
  12. Yuan, D., Pan, L., Chen, D., Wang, X., 2009, "Condensation heat transfer coefficient at vapour-liquid interface of subcooled flow boiling in vertical narrow rectangular channel," Nucl. Power Eng., 30, pp. 30-34.
  13. Zeng, Q., Cai, J., Yin, H., Yang, X., Watanabe, T., 2015, "Numerical simulation of single bubble condensation in subcooled flow using OpenFOAM," Prog. Nucl. Energy, 83, pp. 336~346. https://doi.org/10.1016/j.pnucene.2015.04.011