과제정보
This research was financially supported by the National Natural Science Foundation of China (grant No. 51879207).
참고문헌
- ABAQUS (2011), User's Manual, Version 6.11, Dassault Systemes.
- Barani, O.R., Majidaie, S. and Mosallanejad, M. (2016), "Numerical modeling of water pressure in propagating concrete cracks", J. Eng. Mech., 142(4), 04016011. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001048.
- Barenblatt, G.I. (1959), "The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks", J. Appl. Math. Mech., 23(3), 622-636. https://doi.org/10.1016/0021-8928(59)90157-1
- Bian, K., Liu, J., Xiao, M. and Liu, Z. (2016), "Cause investigation and verification of lining cracking of bifurcation tunnel at Huizhou Pumped Storage Power Station", Tunnel. Undergr. Space Technol., 54, 123-134. https://doi.org/10.1016/j.tust.2015.10.030.
- Bian, K., Xiao, M. and Chen, J. (2009), "Study on coupled seepage and stress fields in the concrete lining of the underground pipe with high water pressure", Tunnel. Undergr. Space Technol., 24, 287-295. https://doi.org/10.1016/j.tust.2008.10.003.
- Camanho, P.P., Davila, C.G. and De Moura, M.F. (2003), "Numerical simulation of mixed-mode progressive delamination in composite materials", J. Compos. Mater., 37(16), 1415-1438. https://doi.org/10.1177/0021998303034505.
- Chang, X., Hu, C., Ma, G. and Zhou, W. (2011), "Continuous-discontinuous deformable discrete element method to simulate the whole failure process of rock masses and application", Chin. J. Rock Mech. Eng., 30(10), 2004-2011.
- Chauhan, A. (2021), "Crack propagation in reinforced concrete exposed to non-uniform corrosion under real climate", Eng. Fract. Mech., 248(1), 107719. https://doi.org/10.1016/j.engfracmech.2021.107719.
- Chen, G., Gao, H. and Hu, Y. (2019), "Hydraulic fracturing analysis of pressure tunnel lining based on random assignment of mechanical parameters of cohesive element", Adv. Eng. Sci., 51(5), 60-67.
- Chen, M., Li, M., Wu, Y. and Kang, B. (2020), "Simulation of hydraulic fracturing using different mesh types based on zero thickness cohesive element", Process., 8(2), 189. https://doi.org/10.3390/pr8020189.
- Chen, Z. (2012), "Finite element modelling of viscosity-dominated hydraulic fractures", J. Petrol. Sci. Eng., 88-89, 136-144. https://doi.org/10.1016/j.petrol.2011.12.021.
- Cunha, V.M.C.F., Barros, J. and Sena-Cruz, J.M. (2012), "A finite element model with discrete embedded elements for fibre reinforced composites", Comput. Struct., 94-95, 22-33. https://doi.org/10.1016/j.compstruc.2011.12.005.
- Dadashi, E., Noorzad, A., Shahriar, K. and Goshtasbi, K. (2017), "Hydro-mechanical interaction analysis of reinforced concrete lining in pressure tunnels", Tunnel. Undergr. Space Technol., 69, 125-132. https://doi.org/10.1016/j.tust.2017.06.006.
- Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solid., 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2.
- Durand, R. and da Silva, F.H.B.T. (2019), "A Coulomb-based model to simulate concrete cracking using cohesive elements", Int. J. Fract., 220(1), 17-43. https://doi.org/10.1007/s10704-019-00395-5.
- Elices, M., Guinea, G.V., Gomez, J. and Planas, J. (2002), "The cohesive zone model: Advantages, limitations and challenges", Eng. Fract. Mech., 69(2), 137-163. https://doi.org/10.1016/S0013-7944(01)00083-2.
- Fahimifar, A. and Zareifard, M.R. (2009), "A theoretical solution for analysis of tunnels below groundwater considering the hydraulic-mechanical coupling", Tunnel. Undergr. Space Technol., 24(6), 634-646. https://doi.org/10.1016/j.tust.2009.06.002.
- Fernhndez, G. (1994), "Behavior of pressure tunnels and guidelines for liner design", J. Geotech. Eng., 120(10), 1768-1791. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:10(1768).
- Galvez, J.C., Planas, J., Sancho, J.M., Reyes, E., Cendon, D.A. and Casati, M.J. (2013), "An embedded cohesive crack model for finite element analysis of quasi-brittle materials", Eng. Fract. Mech., 109, 369-386. https://doi.org/10.1016/j.engfracmech.2012.08.021.
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formulation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-784. https://doi.org/10.1016/0008-8846(76)90007-7.
- Hou, J. (2009), "Observed data analysis of water filling test of the high-pressure tunnel in Tianhuangping Pumped-Storage Power Station", Adv. Sci. Technol. Water Resour., 29(2), 27-31.
- Hou, S., Li, K., Wu, Z., Li, F. and Shi, C. (2022), "Quantitative evaluation on self-healing capacity of cracked concrete by water permeability test-A review", Cement Concrete Compos., 127, 104404. https://doi.org/10.1016/j.cemconcomp.2021.104404.
- Jiang, H. and Meng, D. (2018), "3D numerical modelling of rock fracture with a hybrid finite and cohesive element method", Eng. Fract. Mech., 199, 280-293. https://doi.org/10.1016/j.engfracmech.2018.05.037.
- Karami, M., Kabiri-Samani, A., Nazari-Sharabian, M. and Karakouzian, M. (2019), "Investigating the effects of transient flow in concrete-lined pressure tunnels, and developing a new analytical formula for pressure wave velocity", Tunnel. Undergr. Space Technol., 91, 102992. https://doi.org/10.1016/j.tust.2019.102992.
- Liu, C., Zhou, Z., Wang, X. and Zhang, B. (2012), "Analysis and determination for the parameters of "cohesive element" in the numerical model of single fiber composites: The elastic parameters", J. Reinf. Plast. Compos., 31(17), 1127-1135. https://doi.org/10.1177/0731684412453360.
- Lyu, D., Yu, C., Ma, S. and Wang, X. (2018), "Nonlinear seismic response of a hydraulic tunnel considering fluid-solid coupling", Math. Prob. Eng., 1-12. https://doi.org/10.1155/2018/9608542.
- Ma, G., Zhou, C., Chang, X. and Zhou, W. (2011), "Continuous-discontinuous coupling analysis for whole failure process of rock", Chin. J. Rock Mech. Eng., 30(12), 2444-2455.
- Mello, L., Le, J.L. and Ballarini, R. (2020), "Numerical modeling of delayed progressive collapse of reinforced concrete structures", J. Eng. Mech., 146(10), 04020113. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001843.
- Morales-Alonso, G., Rey-de-Pedraza, V., Galvez, F. and Cendon, D.A. (2018), "Numerical simulation of fracture of concrete at different loading rates by using the cohesive crack model", Theor. Appl. Fract. Mech., 96, 308-325. https://doi.org/10.1016/j.tafmec.2018.05.003.
- Picandet, V., Khelidj, A. and Bellegou, H. (2009), "Crack effects on gas and water permeability of concretes", Cement Concrete Res., 39(6), 537-547. https://doi.org/10.1016/j.cemconres.2009.03.009.
- Pulatsu, B., Erdogmus, E., Loureno, P.B., Lemos, J.V. and Tuncay, K. (2021), "Numerical modeling of the tension stiffening in reinforced concrete members via discontinuum models", Comput. Part. Mech., 8(3), 423-436. https://doi.org/10.1007/s40571-020-00342-5.
- Rabczuk, T., Zi, G., Bordas, S. and Nguyen-Xuan, H. (2008), "A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures", Eng. Fract. Mech., 75(16), 4740-4758. https://doi.org/10.1016/j.engfracmech.2008.06.019.
- Rosa, A.L., Yu, R.C., Ruiz, G., Saucedo, L. and Sousa, J.L.A.O. (2012), "A loading rate dependent cohesive model for concrete fracture", Eng. Fract. Mech., 82, 195-208. https://doi.org/10.1016/j.engfracmech.2011.12.013.
- Salehnia, F., Sillen, X., Li, X.L. and Charlier, R. (2017), "Numerical simulation of a discontinuous gallery lining's behavior, and its interaction with rock", Int. J. Numer. Anal. Meth. Geomech., 41, 1569-1589. https://doi.org/10.1002/nag.2689.
- Schleiss, A.J. (1986), "Design of pervious pressure tunnels", Int. Water Power Dam Constr., 5, 21-26.
- Schleiss, A.J. (1997), "Design of reinforced concrete linings of Pressure Tunnels and shafts", Int. J. Hydropow. Dam., 4(3), 88-94.
- Segura, J.M. and Carol, I. (2010), "Numerical modelling of pressurized fracture evolution in concrete using zero-thickness interface elements", Eng. Fract. Mech., 77(9), 1386-1399. https://doi.org/10.1016/j.engfracmech.2010.03.014.
- Shen, W. (2010), "Test research on the limiting crack design of hydraulic reinforced concrete tunnel lining", Water Resour. Power, 28(5), 78-81.
- Simanjuntak, T.D.Y.F., Marence, M., Mynett, A.E. and Schleiss, A.J. (2013), "Mechanical-hydraulic interaction in the lining cracking process of pressure tunnels", Int. J. Hydropow. Dam., 20(5), 98-105.
- Simanjuntak, T.D.Y.F., Marence, M., Schleiss, A.J. and Mynert, A.E. (2012), "Design of pressure tunnels using a finite element model", Int. J. Hydropow. Dam., 19(5), 98-105.
- Sinaie, S., Ngo, T.D. and Nguyen, V.P. (2018), "A discrete element model of concrete for cyclic loading", Comput. Struct., 196, 173-185. https://doi.org/10.1016/j.compstruc.2017.11.014.
- Su, K., Yang, Z., Zhang, W., Wu, H., Zhang, Q. and Wu, H. (2017), "Bearing mechanism of composite structure with reinforced concrete and steel liner: An application in penstock", Eng. Struct., 141, 344-355. https://doi.org/10.1016/j.engstruct.2017.03.021.
- Suo, Y., Chen, Z., Yan, H., Wang, D. and Zhang, Y. (2019), "Using cohesive zone model to simulate the hydraulic fracture interaction with natural fracture in poro-viscoelastic formation", Energi., 12(7), 1254. https://doi.org/10.3390/en12071254.
- Wang, S., Zhong, Z. and Ren, Y. (2018), "Elastic-plastic solutions for a circular hydraulic pressure tunnel based on the D-P criterion considering the fluid field", Innov. Infrastr. Solut., 3(1), 1-13. https://doi.org/10.1007/s41062-018-0135-6.
- Wang, T., Hu, W., Wu, H., Zhou, W., Su, K. and Cheng, L. (2016), "Seepage analysis of a diversion tunnel with high pressure in different periods: A case study", Eur. J. Environ. Civil Eng., 22(4), 386-404. https://doi.org/10.1080/19648189.2016.1197159.
- Wu, H., Zhou, L., Su, K., Zhou, Y. and Wen, X. (2019), "Hydro-mechanical interaction of reinforced concrete lining in hydraulic pressure tunnel", Struct. Eng. Mech., 71(6), 699-712. https://doi.org/10.12989/sem.2019.71.6.699.
- Xiao, M. (2002), "Three-dimensional numerical analysis on lining seepage crack of underground concrete branch pipe with high pressure water", Chin. J. Rock Mech. Eng., 21(7), 1022-1026.
- Xue, W., Yao, Z., Jing, W., Tang, B., Kong, G. and Wu, H. (2019), "Experimental study on permeability evolution during deformation and failure of shaft lining concrete", Constr. Build. Mater., 195, 564-573. https://doi.org/10.1016/j.conbuildmat.2018.11.101.
- Yang, F., Zhou, H., Zhang, C., Lu, J., Lu, X. and Geng, Y. (2020), "An analysis method for evaluating the safety of pressure water conveyance tunnel in argillaceous sandstone under water-weakening conditions", Tunnel. Undergr. Space Technol., 97, 103264. https://doi.org/10.1016/j.tust.2019.103264.
- Yang, L., Chang, X., Zhou, W., Cheng, Y. and Ma, G. (2016), "Seismic cracking analysis of a gravity dam based on deformable distinct element method", J. Vib. Shock, 35(7), 49-55.
- Yoon, J., Han, J., Joo, E. and Shin, J. (2014), "Effects of tunnel shapes in structural and hydraulic interaction", KSCE J. Civil Eng., 18(3), 735-774. https://doi.org/10.1007/s12205-014-1325-1.
- Zareifard, M.R. (2018), "An analytical solution for design of pressure tunnels considering seepage loads", Appl. Math. Model., 62, 62-85. https://doi.org/10.1016/j.apm.2018.05.032
- Zhang, W., Dai, B., Liu, Z. and Zhou, C. (2018), "Numerical algorithm of reinforced concrete lining cracking process for pressure tunnels", Eng. Comput., 35(1), 91-107. https://doi.org/10.1108/EC-11-2016-0394.
- Zhang, W., Liu, M., Bian, K., Cong, P. and Yuan, W. (2021), "Modelling the hydro-mechanical behaviour of high-pressure tunnel with emphasis on the interaction between lining and rock mass", Comput. Geotech., 139, 104382. https://doi.org/10.1016/j.compgeo.2021.104382.
- Zhang, Y. (2001), "Experience and lessons of hydraulic tunnel construction (I)", Guizhou Water Power, 15(4), 76-84.
- Zhao, H., Liu, X., Bao, Y. and Yuan, Y. (2017), "Nonlinear simulation of tunnel linings with a simplified numerical modelling", Struct. Eng. Mech., 61(5), 593-603. https://doi.org/10.12989/sem.2017.61.5.593.
- Zhou, L., Su, K., Wang, Y., Zhang, Y., Zhu, H. and Wu, H. (2021), "Hydraulic fracturing analysis method of reinforced concrete lining in hydraulic tunnel", J. Hydraulic Eng., 52(1), 21-33.
- Zhou, L., Su, K., Wu, H. and Shi, C. (2018), "Numerical investigation of grouting of rock mass with fracture propagation using cohesive finite elements", Int. J. Geomech., 18(7), 04018075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001184.
- Zhou, L., Su, K., Zhou, Y., Wen, X. and Wu, H. (2018), "Hydro-mechanical coupling analysis of pervious lining in high pressure hydraulic tunnel", J. Hydraulic Eng., 49(3), 313-322.
- Zhou, Y., Su, K. and Wu, H. (2015), "Hydro-mechanical interaction analysis of high pressure hydraulic tunnel", Tunnel. Undergr. Space Technol., 47, 28-34. https://doi.org/10.1016/j.tust.2014.12.004.
- Zhu, H.Y., Deng, J.G., Zhao, J., Zhao, H., Liu, H.L. and Wang, T. (2014), "Cementing failure of the casing-cement-rock interfaces during hydraulic fracturing", Comput. Concrete, 14(1), 91-107. https://doi.org/10.12989/csc.2014.14.1.091.
- Zou, Z., Reid, S.R., Li, S. and Soden, P.D. (2002), "Modelling interlaminar and intralaminar damage in filament-wound pipes under quasi-static indentation", J. Compos. Mater., 36(4), 477-499. https://doi.org/10.1177/0021998302036004539.