DOI QR코드

DOI QR Code

Analytical solutions for vibrations of rectangular functionally graded Mindlin plates with vertical cracks

  • Chiung-Shiann Huang (Department of Civil Engineering, National Yang Ming Chiao Tung University) ;
  • Yun-En Lu (Department of Civil Engineering, National Yang Ming Chiao Tung University)
  • Received : 2022.12.14
  • Accepted : 2023.03.07
  • Published : 2023.04.10

Abstract

Analytical solutions to problems are crucial because they provide high-quality comparison data for assessing the accuracy of numerical solutions. Benchmark analytical solutions for the vibrations of cracked functionally graded material (FGM) plates are not available in the literature because of the high level of complexity of such solutions. On the basis of first-order shear deformation plate theory (FSDT), this study proposes analytical series solutions for the vibrations of FGM rectangular plates with side or internal cracks parallel to an edge of the plates by using Fourier cosine series and the domain decomposition technique. The distributions of FGM properties along the thickness direction are assumed to follow a simple power law. The proposed analytical series solutions are validated by performing comprehensive convergence studies on the vibration frequencies of cracked square plates with various crack lengths and under various boundary condition combinations and by performing comparisons with published results based on various plate theories and the theory of three-dimensional elasticity. The results reveal that the proposed solutions are in excellent agreement with literature results obtained using the Ritz method on the basis of FSDT. The paper also presents tabulations of the first six nondimensional frequencies of cracked rectangular Al/Al2O3 FGM plates with various aspect ratios, thickness-to-width ratios, crack lengths, and FGM power law indices under six boundary condition combinations, the tabulated frequencies can serve as benchmark data for assessing the accuracy of numerical approaches based on FSDT.

Keywords

Acknowledgement

This work reported herein was supported by the Ministry of Science and Technology, Taiwan through research grant no. MOST 109-2221-E-009-001-MY2 and MOST 111-2221-E-A49-015-MY2. This support is gratefully acknowledged.

References

  1. Aggarwala, B.D. and Ariel, P.D. (1981), "Vibration and bending of a cracked plate", Rozprawy Inzynierskie, 29(2), 295-310.
  2. Azam, M.S., Ranjan, V. and Kumar, B. (2017), "Free vibration analysis of rhombic plate with central crack", Int. J. Acoust. Vib., 22(4), 481-492. https://doi.org/10.20855/ijav.2017.22.4494.
  3. Bachene, M., Tiberkak, R. and Rechak, S. (2009), "Vibration analysis of cracked plates using the extended finite element method", Arch. Appl. Mech., 79, 249-262. https://doi.org/10.1007/s00419-008-0224-7.
  4. Doan, D.H., Do, T.V., Pham, P.M. and Duc, N.D. (2019), "Validation simulation for free vibration and buckling of cracked Mindlin plates using phase field method", Mech. Adv. Mater. Struct., 26(12), 1018-1027. https://doi.org/10.1080/15376494.2018.1430262.
  5. Duc, N.D. and Minh, P.P. (2021), "Free vibration analysis of cracked FG CNTRC plates using phase field theory", Aerosp. Sci. Technol., 112, 106654. https://doi.org/10.1016/j.ast.2021.106654.
  6. Fantuzzi, N., Tornabene, F. and Viola, E. (2015), "Four-parameter functionally graded cracked plates of arbitrary shape: A GDQFEM solution for free vibrations", Mech. Adv. Mater. Struct., 23(1), 89-107. https://doi.org/10.1080/15376494.2014.933992.
  7. Gayen, D., Tiwari, R. and Chakraborty, D. (2019), "Static and dynamic analyses of cracked functionally graded structural components: A review", Compos. Part B-Eng., 173, 106982. https://doi.org/10.1016/j.compositesb.2019.106982.
  8. Hosseini-Hashemi, S., Gh, H.R. and Rokni, H.D.T. (2010), "Exact free vibration of rectangular Mindlin plates with all-over part-through open cracks", Compos. Struct., 88, 1015-1032. https://doi.org/10.1016/j.compstruc.2010.06.004.
  9. Huang, C.S. and Leissa, A.W. (2009), "Vibration analysis of rectangular plates with side cracks via the Ritz method", J. Sound Vib., 323, 974-988. https://doi.org/10.1016/j.jsv.2009.01.018.
  10. Huang, C.S., Lee, H.T., Li, P.Y. and Chang, M.J. (2021), "Three-dimensional free vibration analyses of preloaded cracked plates of functionally graded materials via the MLS-Ritz method", Mater., 14, 7712. https://doi.org/10.3390/ma14247712.
  11. Huang, C.S., Leissa, A.W. and Li, R.S. (2011a), "Accurate vibration analysis of thick, cracked rectangular plates", J. Sound Vib., 330, 2079-2093. https://doi.org/10.1016/j.jsv.2010.11.007.
  12. Huang, C.S., McGee, O.G. and Chang, M.J. (2011b), "Vibrations of cracked rectangular FGM thick plates", Compos. Struct., 93(7), 1747-1764. https://doi.org/10.1016/j.compstruct.2011.01.005.
  13. Huang, C.S., McGee, O.G. and Wang, K.P. (2013), "Three-dimensional vibrations of cracked rectangular parallelepipeds of functionally graded material", Int. J. Mech. Sci., 70, 1-25. https://doi.org/10.1016/j.ijmecsci.2012.05.009.
  14. Huang, C.S., Yang, P.J. and Chang, M.J. (2012), "Three-dimensional vibrations of functionally graded material cracked rectangular plates with through internal cracks", Compos. Struct., 94(9), 2764-2776. https://doi.org/10.1016/j.compstruct.2012.04.003.
  15. Joshi, P.V., Jain, N.K. and Ramtekkar, G.D. (2015), "Analytical modeling for vibration analysis of thin rectangular orthotropic/functionally graded plates with an internal crack", J. Sound Vib., 344, 377-398. https://doi.org/10.1016/j.jsv.2015.01.026.
  16. Khalafia, V. and Fazilati, J. (2021), "Free vibration analysis of functionally graded plates containing embedded curved cracks", Struct. Eng. Mech., 79(2), 157-168. https://doi.org/10.12989/sem.2021.79.2.157.
  17. Lee, H.P. and Lim, S.P. (1993), "Vibration of cracked rectangular plates including transverse shear deformation and rotary inertia", Comput. Struct., 49(4), 715-718. https://doi.org/10.1016/0045-7949(93)90074-N.
  18. Li, R.S. (2009), "Vibrations of rectangular cracked Mindlin plates via the Ritz", M.S. Thesis, National Chiao Tung University, Hsinchu, Taiwan.
  19. Li, W.L. (2000), "Free vibrations of beams with general boundary conditions", J. Sound Vib., 237(4), 709-725. https://doi.org/10.1006/jsvi.2000.3150.
  20. Li, W.L., Zhang, X., Du, J. and Liu, Z. (2009), "An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports", J. Sound Vib., 321, 254-269. https://doi.org/10.1016/j.jsv.2008.09.035.
  21. Liew, K.M., Hung, K.C. and Lim, M.K. (1994), "A solution method for analysis of cracked plates under vibration", Eng. Fract. Mech., 48(3), 393-404. https://doi.org/10.1016/0013-7944(94)90130-9.
  22. Liu, F.L. and Liew, K. (1999), "Vibration analysis of discontinuous Mindlin plates by differential quadrature element method", J. Vib. Acoust., 121, 204-208. https://doi.org/10.1115/1.2893965.
  23. Lynn, P.P. and Kumbasar, N. (1967), "Free vibrations of thin rectangular plates having narrow cracks with simply supported edges", Develop. Mech., 4, 911-928.
  24. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech., ASME, 18(1), 31-38. https://doi.org/10.1115/1.4010217.
  25. Minh, P.P. and Duc, N.D. (2021), "The effect of cracks and thermal environment on free vibration of FGM plates", Thin Wall. Struct., 159, 107291. https://doi.org/10.1016/j.tws.2020.107291.
  26. Minh, P.P., Manh, D.T. and Duc, N.D. (2021), "Free vibration of cracked FGM plates with variable thickness resting on elastic foundations", Thin Wall. Struct., 161, 107425, https://doi.org/10.1016/j.tws.2020.107425.
  27. Natarajan, S., Baiz, P.M., Bordas, S., Rabczuk, T. and Kerfriden, P. (2011a), "Natural frequencies of cracked functionally graded material plates by the extended finite element method", Compos. Struct., 93(11), 3082-3092. https://doi.org/10.1016/j.compstruct.2011.04.007.
  28. Natarajan, S., Baiz, P.M., Ganapathi, M., Kerfriden, P. and Bordas, S. (2011b), "Linear free flexural vibration of cracked functionally graded plates in thermal environment", Comput. Struct., 89, 1535-1546. https://doi.org/10.1016/j.compstruc.2011.04.002.
  29. Nguyen-Thoi, T., Rabczuk, T., Ho-Huu, V., Le-Anh, L., Dang-Trungm, H. and Vo-Duy, T. (2017), "An extended cell-based smoothed three-node Mindlin plate element (XCS-MIN3) for free vibration analysis of cracked FGM plates", Int. J. Comput. Meth., 14(2), 1750011. https://doi.org/10.1142/S0219876217500116.
  30. Peng, L.X., Tao, Y.P., Liang, K., Li, L.Y., Qin, X., Zeng, Z.P. and Teng, X.D. (2017), "Simulation of a crack in stiffened plates via a meshless formulation and FSDT", Int. J. Mech. Sci., 131, 880-893. https://doi.org/10.1016/j.ijmecsci.2017.07.063.
  31. Rahimabadi, A.A., Natarajan, S. and Bordas, S.P.A. (2013), "Vibration of functionally graded material plates with cutouts & cracks in thermal environment", Key Eng. Mater., 560, 157-180. https://doi.org/10.4028/www.scientific.net/KEM.560.157.
  32. Raza, A., Talha, M. and Pathak, H. (2021), "Influence of material uncertainty on vibration characteristics of higher-order cracked functionally gradient plates using XFEM", Int. J. Appl. Mech., 13(5), 2150062. https://doi.org/10.1142/S1758825121500629.
  33. Shahverdi, H. and Navardi, M.M. (2017), "Free vibration analysis of cracked thin plates using generalized differential quadrature element method", Struct. Eng. Mech., 62(3), 345-355. https://doi.org/10.12989/sem.2017.62.3.345.
  34. Sinha, G.P. and Kumar, B. (2020), "Review on vibration analysis of functionally graded material structural components with cracks", J. Vib. Eng. Technol., 9(1), 23-49. https://doi.org/10.1007/s42417-020-00208-3.
  35. Stahl, B. and Keer, L.M. (1972), "Vibration and stability of cracked rectangular plates", Int. J. Solid. Struct., 8(1), 69-91. https://doi.org/10.1016/0020-7683(72)90052-2.
  36. Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M. and Carrera, E. (2015), "Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review", Compos. Struct., 120, 10-31. https://doi.org/10.1016/j.compstruct.2014.09.070
  37. Tran, L.V., Ly, H.A., Wahab, M.A. and Nguyen-Xuan, H. (2015), "Vibration analysis of cracked FGM plates using higher-order shear deformation theory and extended isogeometric approach", Int. J. Mech. Sci., 96-97, 65-78. https://doi.org/10.1016/j.ijmecsci.2015.03.003.
  38. Yang, G., Hu, D., Han, X. and Ma, G.W. (2017), "An extended edge-based smoothed discrete shear gap method for free vibration analysis of cracked Reissner-Mindlin plate", Appl. Math. Model., 51, 477-504. https://doi.org/10.1016/j.apm.2017.06.046.
  39. Yang, H.S. and Dong, C.Y. (2019), "Adaptive extended isogeometric analysis based on PHT-splines for thin cracked plates and shells with Kirchhoff-Love theory", Appl. Math. Model., 76, 759-799. https://doi.org/10.1016/j.apm.2019.07.002.
  40. Yang, H.S., Dong, C.Y., Qin, X.C. and Wu, Y.H. (2020), "Vibration and buckling analyses of FGM plates with multiple internal defects using XIGA-PHT and FCM under thermal and mechanical loads", Appl. Math. Model., 78, 433-481. https://doi.org/10.1016/j.apm.2019.10.011.
  41. Yin, S., Yu, T., Bui, T.Q., Liu, P. and Hirose, S. (2016), "Buckling and vibration extended isogeometric analysis of imperfect graded Reissner-Mindlin plates with internal defects using NURBS and level sets", Comput. Struct., 177, 23-38. https://doi.org/10.1016/j.compstruc.2016.08.005.
  42. Yuan, J. and Dickinson, S.M. (1992), "The flexural vibration of rectangular plate systems approached by using artificial springs in the Rayleigh-Ritz method", J. Sound Vib., 159(1), 39-55. https://doi.org/10.1016/0022-460X(92)90450-C.
  43. Zhang, J.K., Yu, T.T and Bui, T.Q. (2021), "An adaptive XIGA with local refined NURBS for modeling cracked composite FGM Mindlin-Reissner plates", Eng. Comput., 8(4), 3639-3661. https://doi.org/10.1007/s00366-021-01334-6.
  44. Zhang, N., Khan, T., Guo, H.M., Shi, S.S., Zhong, W. and Zhang, W.W. (2019), "Functionally graded materials: An overview of stability, buckling, and free vibration analysis", Adv. Mater. Sci. Eng., 2019, Article ID 1354150. https://doi.org/10.1155/2019/1354150.