Acknowledgement
This work reported herein was supported by the Ministry of Science and Technology, Taiwan through research grant no. MOST 109-2221-E-009-001-MY2 and MOST 111-2221-E-A49-015-MY2. This support is gratefully acknowledged.
References
- Aggarwala, B.D. and Ariel, P.D. (1981), "Vibration and bending of a cracked plate", Rozprawy Inzynierskie, 29(2), 295-310.
- Azam, M.S., Ranjan, V. and Kumar, B. (2017), "Free vibration analysis of rhombic plate with central crack", Int. J. Acoust. Vib., 22(4), 481-492. https://doi.org/10.20855/ijav.2017.22.4494.
- Bachene, M., Tiberkak, R. and Rechak, S. (2009), "Vibration analysis of cracked plates using the extended finite element method", Arch. Appl. Mech., 79, 249-262. https://doi.org/10.1007/s00419-008-0224-7.
- Doan, D.H., Do, T.V., Pham, P.M. and Duc, N.D. (2019), "Validation simulation for free vibration and buckling of cracked Mindlin plates using phase field method", Mech. Adv. Mater. Struct., 26(12), 1018-1027. https://doi.org/10.1080/15376494.2018.1430262.
- Duc, N.D. and Minh, P.P. (2021), "Free vibration analysis of cracked FG CNTRC plates using phase field theory", Aerosp. Sci. Technol., 112, 106654. https://doi.org/10.1016/j.ast.2021.106654.
- Fantuzzi, N., Tornabene, F. and Viola, E. (2015), "Four-parameter functionally graded cracked plates of arbitrary shape: A GDQFEM solution for free vibrations", Mech. Adv. Mater. Struct., 23(1), 89-107. https://doi.org/10.1080/15376494.2014.933992.
- Gayen, D., Tiwari, R. and Chakraborty, D. (2019), "Static and dynamic analyses of cracked functionally graded structural components: A review", Compos. Part B-Eng., 173, 106982. https://doi.org/10.1016/j.compositesb.2019.106982.
- Hosseini-Hashemi, S., Gh, H.R. and Rokni, H.D.T. (2010), "Exact free vibration of rectangular Mindlin plates with all-over part-through open cracks", Compos. Struct., 88, 1015-1032. https://doi.org/10.1016/j.compstruc.2010.06.004.
- Huang, C.S. and Leissa, A.W. (2009), "Vibration analysis of rectangular plates with side cracks via the Ritz method", J. Sound Vib., 323, 974-988. https://doi.org/10.1016/j.jsv.2009.01.018.
- Huang, C.S., Lee, H.T., Li, P.Y. and Chang, M.J. (2021), "Three-dimensional free vibration analyses of preloaded cracked plates of functionally graded materials via the MLS-Ritz method", Mater., 14, 7712. https://doi.org/10.3390/ma14247712.
- Huang, C.S., Leissa, A.W. and Li, R.S. (2011a), "Accurate vibration analysis of thick, cracked rectangular plates", J. Sound Vib., 330, 2079-2093. https://doi.org/10.1016/j.jsv.2010.11.007.
- Huang, C.S., McGee, O.G. and Chang, M.J. (2011b), "Vibrations of cracked rectangular FGM thick plates", Compos. Struct., 93(7), 1747-1764. https://doi.org/10.1016/j.compstruct.2011.01.005.
- Huang, C.S., McGee, O.G. and Wang, K.P. (2013), "Three-dimensional vibrations of cracked rectangular parallelepipeds of functionally graded material", Int. J. Mech. Sci., 70, 1-25. https://doi.org/10.1016/j.ijmecsci.2012.05.009.
- Huang, C.S., Yang, P.J. and Chang, M.J. (2012), "Three-dimensional vibrations of functionally graded material cracked rectangular plates with through internal cracks", Compos. Struct., 94(9), 2764-2776. https://doi.org/10.1016/j.compstruct.2012.04.003.
- Joshi, P.V., Jain, N.K. and Ramtekkar, G.D. (2015), "Analytical modeling for vibration analysis of thin rectangular orthotropic/functionally graded plates with an internal crack", J. Sound Vib., 344, 377-398. https://doi.org/10.1016/j.jsv.2015.01.026.
- Khalafia, V. and Fazilati, J. (2021), "Free vibration analysis of functionally graded plates containing embedded curved cracks", Struct. Eng. Mech., 79(2), 157-168. https://doi.org/10.12989/sem.2021.79.2.157.
- Lee, H.P. and Lim, S.P. (1993), "Vibration of cracked rectangular plates including transverse shear deformation and rotary inertia", Comput. Struct., 49(4), 715-718. https://doi.org/10.1016/0045-7949(93)90074-N.
- Li, R.S. (2009), "Vibrations of rectangular cracked Mindlin plates via the Ritz", M.S. Thesis, National Chiao Tung University, Hsinchu, Taiwan.
- Li, W.L. (2000), "Free vibrations of beams with general boundary conditions", J. Sound Vib., 237(4), 709-725. https://doi.org/10.1006/jsvi.2000.3150.
- Li, W.L., Zhang, X., Du, J. and Liu, Z. (2009), "An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports", J. Sound Vib., 321, 254-269. https://doi.org/10.1016/j.jsv.2008.09.035.
- Liew, K.M., Hung, K.C. and Lim, M.K. (1994), "A solution method for analysis of cracked plates under vibration", Eng. Fract. Mech., 48(3), 393-404. https://doi.org/10.1016/0013-7944(94)90130-9.
- Liu, F.L. and Liew, K. (1999), "Vibration analysis of discontinuous Mindlin plates by differential quadrature element method", J. Vib. Acoust., 121, 204-208. https://doi.org/10.1115/1.2893965.
- Lynn, P.P. and Kumbasar, N. (1967), "Free vibrations of thin rectangular plates having narrow cracks with simply supported edges", Develop. Mech., 4, 911-928.
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech., ASME, 18(1), 31-38. https://doi.org/10.1115/1.4010217.
- Minh, P.P. and Duc, N.D. (2021), "The effect of cracks and thermal environment on free vibration of FGM plates", Thin Wall. Struct., 159, 107291. https://doi.org/10.1016/j.tws.2020.107291.
- Minh, P.P., Manh, D.T. and Duc, N.D. (2021), "Free vibration of cracked FGM plates with variable thickness resting on elastic foundations", Thin Wall. Struct., 161, 107425, https://doi.org/10.1016/j.tws.2020.107425.
- Natarajan, S., Baiz, P.M., Bordas, S., Rabczuk, T. and Kerfriden, P. (2011a), "Natural frequencies of cracked functionally graded material plates by the extended finite element method", Compos. Struct., 93(11), 3082-3092. https://doi.org/10.1016/j.compstruct.2011.04.007.
- Natarajan, S., Baiz, P.M., Ganapathi, M., Kerfriden, P. and Bordas, S. (2011b), "Linear free flexural vibration of cracked functionally graded plates in thermal environment", Comput. Struct., 89, 1535-1546. https://doi.org/10.1016/j.compstruc.2011.04.002.
- Nguyen-Thoi, T., Rabczuk, T., Ho-Huu, V., Le-Anh, L., Dang-Trungm, H. and Vo-Duy, T. (2017), "An extended cell-based smoothed three-node Mindlin plate element (XCS-MIN3) for free vibration analysis of cracked FGM plates", Int. J. Comput. Meth., 14(2), 1750011. https://doi.org/10.1142/S0219876217500116.
- Peng, L.X., Tao, Y.P., Liang, K., Li, L.Y., Qin, X., Zeng, Z.P. and Teng, X.D. (2017), "Simulation of a crack in stiffened plates via a meshless formulation and FSDT", Int. J. Mech. Sci., 131, 880-893. https://doi.org/10.1016/j.ijmecsci.2017.07.063.
- Rahimabadi, A.A., Natarajan, S. and Bordas, S.P.A. (2013), "Vibration of functionally graded material plates with cutouts & cracks in thermal environment", Key Eng. Mater., 560, 157-180. https://doi.org/10.4028/www.scientific.net/KEM.560.157.
- Raza, A., Talha, M. and Pathak, H. (2021), "Influence of material uncertainty on vibration characteristics of higher-order cracked functionally gradient plates using XFEM", Int. J. Appl. Mech., 13(5), 2150062. https://doi.org/10.1142/S1758825121500629.
- Shahverdi, H. and Navardi, M.M. (2017), "Free vibration analysis of cracked thin plates using generalized differential quadrature element method", Struct. Eng. Mech., 62(3), 345-355. https://doi.org/10.12989/sem.2017.62.3.345.
- Sinha, G.P. and Kumar, B. (2020), "Review on vibration analysis of functionally graded material structural components with cracks", J. Vib. Eng. Technol., 9(1), 23-49. https://doi.org/10.1007/s42417-020-00208-3.
- Stahl, B. and Keer, L.M. (1972), "Vibration and stability of cracked rectangular plates", Int. J. Solid. Struct., 8(1), 69-91. https://doi.org/10.1016/0020-7683(72)90052-2.
- Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M. and Carrera, E. (2015), "Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review", Compos. Struct., 120, 10-31. https://doi.org/10.1016/j.compstruct.2014.09.070
- Tran, L.V., Ly, H.A., Wahab, M.A. and Nguyen-Xuan, H. (2015), "Vibration analysis of cracked FGM plates using higher-order shear deformation theory and extended isogeometric approach", Int. J. Mech. Sci., 96-97, 65-78. https://doi.org/10.1016/j.ijmecsci.2015.03.003.
- Yang, G., Hu, D., Han, X. and Ma, G.W. (2017), "An extended edge-based smoothed discrete shear gap method for free vibration analysis of cracked Reissner-Mindlin plate", Appl. Math. Model., 51, 477-504. https://doi.org/10.1016/j.apm.2017.06.046.
- Yang, H.S. and Dong, C.Y. (2019), "Adaptive extended isogeometric analysis based on PHT-splines for thin cracked plates and shells with Kirchhoff-Love theory", Appl. Math. Model., 76, 759-799. https://doi.org/10.1016/j.apm.2019.07.002.
- Yang, H.S., Dong, C.Y., Qin, X.C. and Wu, Y.H. (2020), "Vibration and buckling analyses of FGM plates with multiple internal defects using XIGA-PHT and FCM under thermal and mechanical loads", Appl. Math. Model., 78, 433-481. https://doi.org/10.1016/j.apm.2019.10.011.
- Yin, S., Yu, T., Bui, T.Q., Liu, P. and Hirose, S. (2016), "Buckling and vibration extended isogeometric analysis of imperfect graded Reissner-Mindlin plates with internal defects using NURBS and level sets", Comput. Struct., 177, 23-38. https://doi.org/10.1016/j.compstruc.2016.08.005.
- Yuan, J. and Dickinson, S.M. (1992), "The flexural vibration of rectangular plate systems approached by using artificial springs in the Rayleigh-Ritz method", J. Sound Vib., 159(1), 39-55. https://doi.org/10.1016/0022-460X(92)90450-C.
- Zhang, J.K., Yu, T.T and Bui, T.Q. (2021), "An adaptive XIGA with local refined NURBS for modeling cracked composite FGM Mindlin-Reissner plates", Eng. Comput., 8(4), 3639-3661. https://doi.org/10.1007/s00366-021-01334-6.
- Zhang, N., Khan, T., Guo, H.M., Shi, S.S., Zhong, W. and Zhang, W.W. (2019), "Functionally graded materials: An overview of stability, buckling, and free vibration analysis", Adv. Mater. Sci. Eng., 2019, Article ID 1354150. https://doi.org/10.1155/2019/1354150.