DOI QR코드

DOI QR Code

Mechanical behavior and simplified models for the post-tensioned prestressed concrete lining

  • Fan Yang (School of Civil Engineering, Hefei University of Technology) ;
  • Kang Liu (School of Civil Engineering, Hefei University of Technology) ;
  • Yan-qiao Wang (School of Civil Engineering, Hefei University of Technology) ;
  • Ming Huang (School of Civil Engineering, Hefei University of Technology)
  • Received : 2021.07.07
  • Accepted : 2023.03.06
  • Published : 2023.04.10

Abstract

To investigate the mechanical behavior of the post-tensioned prestressed concrete lining (PPCL), the desilting tunnel of the Xiaolangdi Hydro Project in China is adopted as a case, and a detailed three-dimensional continuum model verified by the observation results is established for the PPCL. The radial stresses, longitudinal stresses, axial forces and bending moments of the PPCL under the completed cable tension condition (CCTC) and design water pressure condition (DWPC) are analyzed, respectively. The numerical results reveal that the PPCL concrete is significantly compressed in the circumferential direction by the prestress, while the prestress has a negligible influence on the radial stresses of the PPCL concrete. It should be noted that the concrete near the anchor slots has a complex and adverse stress state with stress concentration, longitudinal tensioning and large bending moment. In addition, a simplified shell model and a further simplified beam model which can take the influences of the prestress loss and the anchor slot into consideration are proposed for the PPCL. The results of the simplified models are in a good agreement with these of the three-dimensional continuum model, and they can be used as efficient approaches for the structural design and analysis of the PPCL.

Keywords

Acknowledgement

This work is supported by the Fundamental Research Funds for the Central Universities (No. JZ2022HGTA0335 and No. JZ2021HGTB0097) and the National Natural Science Foundation of China (No. 51908175).

References

  1. ANSYS Inc. (2013), ANSYS Help, Release 12.0. 
  2. Cao, R., Zhao, Y., Wang, Y. and Pi, J. (2021), "Structural and mechanical characteristics of double-hoop unbonded annular anchor lining", ACI Struct. J., 118(3), 61-70. https://doi.org/10.14359/51729352. 
  3. Chavez, C.I.M., McCullough, B.F. and Fowler, D.W. (2003), "Design of a post-tensioned prestressed concrete pavement, construction guidelines, and monitoring plan", Center for Transportation Research, University of Texas at Austin. 
  4. Collins, M.P. and Mitchell, D. (1997), Prestressed Concrete Structures, Prentice Hall Inc. 
  5. Gambhir, M.L. and de V. Batchelor, B. (1977), "A finite element for 3-D prestressed cablenets", Int. J. Numer. Meth. Eng., 11, 1699-1718. https://doi.org/10.1002/nme.1620111106. 
  6. GB 50010 (2015), Code for Design of Concrete Structures, China Architecture & Building Press, Beijing, 
  7. Gonano, L.P. and Sharp, J.C. (1984), "Design and prestress grouting of a concrete lined high pressure tunnel at Drakensberg", Int. Concrete Abstr. Portal., 83, 19-42. 
  8. Jing, R., Kang, J.F., Wang, Z., Shen, Z.W. and Wang, D.Z. (2018), "Analysis on the tendon spacing of prestressed tunnel liner", Teh. Vjesn., 25(1), 47-51. https://doi.org/10.17559/TV-20170317153659. 
  9. Kang, J.F. and Hu, Y.M. (2005), "Techniques and performance of post-prestressed tunnel liner", Pract. Period. Struct. Des. Constr., 10(2), 102-108. https://doi.org/10.1061/(ASCE)1084-0680(2005)10:2(102). 
  10. Kang, J.F., Liang, Y.H. and Zhang, Q.C. (2006), "3-D finite element analysis of post-prestressed concrete lining", J. Tianjin Univ., 39(8), 968-972. https://doi.org/10.1061/(ASCE)0887-381X(2006)20:1(20). 
  11. Kim, J.M., Lee, J. and Sohn, H. (2018), "Detection of tension force reduction in a post-tensioning tendon using pulsed-eddy-current measurement", Struct. Eng. Mech., 65(2), 129-139. http://doi.org/10.12989/sem.2018.65.2.129. 
  12. Kim, Y.J., Shi, C. and Green, M.F. (2008), "Ductility and cracking behavior of prestressed concrete beams strengthened with prestressed CFRP sheets", J. Compos. Constr., 12(3), 274-283. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:3(274). 
  13. Lee, Y. and Lee, E.T. (2015), "Analysis of prestressed concrete cylinder pipes with fiber reinforced polymer", KSCE J. Civil Eng., 19(3), 682-688. https://doi.org/10.1007/s12205-013-0006-9. 
  14. Li, X.K., Zhao, S.B. and Zhao, G.F. (2004), "Design methods of prestressed concrete penstock", Eng. Mech., 21(6), 124-130. https://doi.org/10.1007/BF02911033. 
  15. Matt, P., Thurnherr, F. and Uherkovich, I. (1978), "Prestressed concrete pressure tunnels", Water Power Dam Constr., 30(5), 23-31. 
  16. Mohammed, A.H. and Taysi, N. (2017), "Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading", Struct. Eng. Mech., 62(5), 595-606. https://doi.org/10.12989/sem.2017.62.5.595. 
  17. Mullins, G., Johnson, K. and Sen, R. (2018), "Post-tensioned splice system for precast, prestressed concrete piles: Part 1, conceptual design", PCI J., 63(1), 26-39. https://doi.org/10.15554/pcij63.1-04. 
  18. Pi, J., Wang, X.G., Cao, R.L., Zhao, Y.F. and Huang, X. (2018), "Innovative loading system for applying internal pressure to a test model of pre-stressed concrete lining in pressure tunnels", J. Eng. Res., 6(2), 24-45. 
  19. Qu, Z.B. (2009), Compilation and Analysis of the Observation Datas for the Desilting Tunnel of Xiaolangdi Hydro Project, Yellow River Water Conservancy Press, Zhengzhou,
  20. Simanjuntak, T.D.Y.F., Marence, M., Mynett, A.E. and Schleiss, A.J. (2014), "Pressure tunnels in non-uniform in situ stress conditions", Tunn. Undergr. Space. Technol., 42, 227-236. https://doi.org/10.1016/j.tust.2014.03.006. 
  21. Tong, L., Zhou, X. and Cao, X. (2018), "Ultimate pressure bearing capacity analysis for the prestressed concrete containment", Ann. Nucl. Energy, 121, 582-593. https://doi.org/10.1016/j.anucene.2018.08.020. 
  22. Trucco, G. and Zeltner, O. (1978), "Grimsel-Oberrar pumped storage system", Water Power Dam Constr., 2, 351-357. 
  23. Wang, Y., Cao, R., Pi, J., Jiang, L. and Zhao, Y. (2020), "Mechanical properties and analytic solutions of prestressed linings with unbonded annular anchors under internal water loading", Tunn. Undergr. Space. Technol., 97, 1-10. https://doi.org/10.1016/j.tust.2019.103244. 
  24. Wannanmacher, H., Bauert, M., Krenn, H., Engel, F. and Komma, N. (2013), "Improved pressure tunnel lining methods, a case study of the Niagara Tunnel Facility Project", Proceedings of the 2013 World Tunnel Congress, Geneva, Switzerland. 
  25. Yang, F., Cao, S.R. and Qin, G. (2018), "Performance of the prestressed composite lining of a tunnel: Case study of the Yellow River Crossing Tunnel", Int. J. Civil Eng., 2(16), 229-241. https://doi.org/10.1007/s40999-016-0124-0. 
  26. Yang, F., Cao, S.R. and Qin, G. (2020), "Mechanical behavior of two kinds of prestressed composite linings: case study of the Yellow River Crossing Tunnel in China", Tunn. Undergr. Space. Technol., 2(16), 229-241. https://doi.org/10.1016/j.tust.2018.04.036. 
  27. Zareifard, M.R. (2018), "An analytical solution for design of pressure tunnels considering seepage loads", Appl. Math. Model., 62, 62-85. https://doi.org/10.1016/j.apm.2018.05.032. 
  28. Zareifard, M.R. and Fahimifar, A. (2016), "A simplified solution for stresses around lined pressure tunnels considering non-radial symmetrical seepage flow", KSCE J. Civil Eng., 20(7), 2640-2654. https://doi.org/10.1007/s12205-016-0105-5. 
  29. Zhao, S.B., Li, X.K., Yan, Z.R. and Liu, X.H. (2008), Techniques and Engineering Applications of Annular High-Performance Prestressed Concrete, Science Press, Beijing, China.