참고문헌
- Afshari, B.M., Mirjavadi, S.S. and Barati, M.R. (2022), "Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model", Adv. Concrete Constr., 13(5), 377-384. https://doi.org/10.12989/acc.2022.13.5.377.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2022), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 38, 356-377. https://doi.org/10.1007/s00366-020-01070-3.
- Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021a), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech.-A/Solid., 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.
- Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021b), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictivelayers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
- Al-Furjan, M.S.H., Hajmohammad, M.H., Shen, X., Rajak, D.K. and Kolahchi, R. (2021), "Evaluation of tensile strength and elastic modulus of 7075-T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method", J. Alloy. Compound., 886, 161261. https://doi.org/10.1016/j.jallcom.2021.161261.
- Al-Furjan, M.S.H., Kolahchi, R., Shan, L., Hajmohammad, M.H., Farrokhian, A. and Shen, X. (2022d), "Slamming impact induced hydrodynamic response in wave-piercing catamaran beam elements with controller", Ocean Eng., 266, 112908. https://doi.org/10.1016/j.oceaneng.2022.112908.
- Al-Furjan, M.S.H., Kong, X.S., Shan, L., SoleimaniJafari, G., Farrokhian, A., Shen, X. and Rajak, D.K. (2022h), "Influence of LPRE on the size-dependent phase velocity of sandwich beam including FG porous and smart nanocomposite layers", Polym. Compos., 43(10), 7390-7402. https://doi.org/10.1002/pc.26820.
- Al-Furjan, M.S.H., Qi, Z.H., Shan, L., Farrokhian, A., Shen, X. and Kolahchi, R. (2022c), "Nano supercapacitors with practical application in aerospace technology: Vibration and wave propagation analysis", Aerosp. Sci. Technol., 133, 108082. https://doi.org/10.1016/j.ast.2022.108082.
- Al-Furjan, M.S.H., Shan, L., Shen, X., Kolahchi, R. and Rajak, D.K. (2022b), "Combination of FEM-DQM for nonlinear mechanics of porous GPL-reinforced sandwich nanoplates based on various theories", Thin Wall. Struct., 178, 109495. https://doi.org/10.1016/j.tws.2022.109495.
- AlFurjan, M.S.H., Shan, L., Shen, X., Zarei, M.S., Hajmohammad, M.H. and Kolahchi, R. (2022a), "A review on fabrication techniques and tensile properties of glass, carbon, and kevlar fiber reinforced polymer composites", J. Mater. Res. Technol., 19, 2930-2959. https://doi.org/10.1016/j.jmrt.2022.0.008.
- Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022g), "On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave. Random Complex Media, 1-25. https://doi.org/10.1080/17455030.2022.2030499.
- Al-Furjan, M.S.H., Yang, Y., Farrokhian, A., Shen, X., Kolahchi, R. and Rajak, D.K. (2022f), "Dynamic instability of nanocomposite piezoelectric-leptadeniapyrotechnica rheological elastomer-porous functionally graded materials micro viscoelastic beams at various strain gradient higher-order theories", Polym. Compos., 43(1), 282-298. https://doi.org/10.1002/pc.26373.
- Al-Furjan, M.S.H., Yin, C., Shen, X., Kolahchi, R., Zarei, M.S. and Hajmohammad, M.H. (2022e), "Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrate", Mech. Syst. Signal Pr., 178, 109269. https://doi.org/10.1016/j.ymssp.2022.109269.
- Amani, M.A., Ebrahimi, F., Dabbagh, A., Rastgoo, A. and Nasiri, M.M. (2021), "A machine learning-based model for the estimation of the temperature-dependent moduli of graphene oxide reinforced nanocomposites and its application in a thermally affected buckling analysis", Eng. Comput., 37, 2245-2255. https://doi.org/10.1007/s00366-020-00945-9.
- Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18, 187-212. https://doi.org/10.12989/scs.2015.18.1.187.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020.
- Bayat, M., Saleem, M., Sahari, B.B., Hamouda, A.M.S. and Mahdi, E. (2009), "Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads", Int. J. Press. Ves. Pip., 86(6), 357-372. https://doi.org/10.1016/j.ijpvp.2008.12.006.
- Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of functionally graded thin rectangular plates resting on Winkler elastic foundation with general boundary conditions using Rayleigh-Ritz method", Int. J. Appl. Mech., 6(04), 1450043. https://doi.org/10.1142/S1758825114500434.
- Chen, C.S. (2005), "Non-linear vibration of a shear deformable functionally graded plate", Compos. Struct., 68(3), 295-302. https://doi.org/10.1016/j.compstruct.2004.03.022.
- Chu, C., Al-Furjan, M.S.H., Kolahchi, R. and Farrokhian, A. (2022a), "A nonlinear Chebyshev-based collocation technique to frequency analysis of thermally pre/post-buckled third-order circular sandwich plates", Commun. Nonlin. Sci. Numer. Simul., 128, 107056. https://doi.org/10.1016/j.cnsns.2022.107056.
- Chu, C., Shan, L., Al-Furjan, M.S.H., Zarei, M.S., Hajmohammad, M.H. and Kolahchi, R. (2022b), "Experimental study for the effect of hole notched in fracture mechanics of GLARE and GFRP composites subjected to quasi-static loading", Theor. Appl. Fract. Mech., 122, 103624. https://doi.org/10.1016/j.tafmec.2022.103624.
- Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Abdel Wahab, M. (2022), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condens. Mat., 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porouscellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
- Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.compstruct.2015.03.023.
- Dabbagh, A. and Ebrahimi, F. (2021), "Postbuckling analysis of meta-nanocomposite beams by considering the CNTs' agglomeration", Eur. Phys. J. Plus, 136, 1168. https://doi.org/10.1140/epjp/s13360-021-02160-x.
- Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2022), "Post-buckling analysis of imperfect multi-scale hybrid nanocomposite beams rested on a nonlinear stiff substrate", Eng. Comput., 38, 301-314. https://doi.org/10.1007/s00366-020-01064-1.
- Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2021), "Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory", Eng. Comput., 37, 2225-2244. https://doi.org/10.1007/s00366-020-00939-7.
- Damanpack, A.R., Bodaghi, M., hassemi, H. and Sayehbani, M. (2013), "Boundary element method applied to the bending analysis of thin functionally graded plates", Lat. Am. J. Solid. Struct., 10(3), 549-570. https://doi.org/10.1590/S1679-78252013000300006.
- Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
- Della Croce, L. and Venini, P. (2004), "Finite elements for functionally graded Reissner-Mindlin plates", Comput. Meth. Appl. Mech. Eng., 193(9-11), 705-725. https://doi.org/10.1016/j.cma.2003.09.014.
- Do, T.V., Bui, T.Q., Yu, T.T., Pham, D.T. and Nguyen, C.T. (2017), "Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment", J. Comput. Sci., 21, 164-181. https://doi.org/10.1016/j.jocs.2017.06.015.
- Duc, N.D. and Tung, H.V. (2010), "Mechanical and thermal postbuckling of shear-deformable FGM plates with temperature-dependent properties", Mech. Compos. Mater., 46(5), 461-476. https://doi.org/10.1007/s11029-010-9163-9.
- Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177/1077546316646239.
- Ebrahimi, F. and Dabbagh, A. (2018a), "Effect of humid-thermal environment on wave dispersion characteristics of single-layered graphene sheets", Appl. Phys. A, 124(4), 1-11. https://doi.org/10.1007/s00339-018-1734-y.
- Ebrahimi, F. and Dabbagh, A. (2018b), "On wave dispersion characteristics of double-layered graphene sheets in thermal environments", J. Electromag. Wave. Appl., 32(15), 1869-1888. https://doi.org/10.1080/09205071.2017.1417918.
- Ebrahimi, F. and Dabbagh, A. (2018c), "On modeling wave dispersion characteristics of protein lipid nanotubules", J. Biomech., 77, 1-7. https://doi.org/10.1016/j.jbiomech.2018.05.038.
- Ebrahimi, F. and Dabbagh, A. (2018d), "NSGT-based acoustical wave dispersion characteristics of thermo-magnetically actuated double-nanobeam systems", Struct. Eng. Mech., 68(6), 701-711. https://doi.org/10.12989/sem.2018.68.6.701.
- Ebrahimi, F. and Dabbagh, A. (2019a), "Wave dispersion characteristics of heterogeneous nanoscale beams via a novel porosity-based homogenization scheme", Eur. Phys. J. Plus, 134(4), 1-8. https://doi.org/10.1140/epjp/i2019-12510-9.
- Ebrahimi, F. and Dabbagh, A. (2019b), "A novel porosity-based homogenization scheme for propagation of waves in axiallyexcited FG nanobeams", Adv. Nano Res., 7(6), 379-390. https://doi.org/10.12989/anr.2019.7.6.379.
- Ebrahimi, F. and Dabbagh, A. (2019c), Wave Propagation Analysis of Smart Nanostructures, 1st Edition, CRC Press.
- Ebrahimi, F. and Dabbagh, A. (2019d), "Application of the nonlocal strain gradient elasticity on the wave dispersion behaviors of inhomogeneous nanosize beams", Eur. Phys. J. Plus, 134(3), 112. https://doi.org/10.1140/epjp/i2019-12464-x.
- Ebrahimi, F. and Dabbagh, A. (2020), Mechanics of Nanocomposites: Homogenization and Analysis, CRC Press.
- Ebrahimi, F. and Dabbagh, A. (2021a), "Magnetic field effects on thermally affected propagation of acoustical waves in rotary double-nanobeam systems", Wave. Random Complex Media, 31(1), 25-45. https://doi.org/10.1080/17455030.2018.1558308.
- Ebrahimi, F. and Dabbagh, A. (2021b), "Vibration analysis of fluid-conveying multi-scale hybrid nanocomposite shells with respect to agglomeration of nanofillers", Def. Technol., 17(1), 212-225. https://doi.org/10.1016/j.dt.2020.01.007.
- Ebrahimi, F. and Dabbagh, A. (2022), "Vibration analysis of multiscale hybrid nanocomposite shells by considering nanofillers' aggregation", Wave. Random Complex Media, 32(3), 1-19. https://doi.org/10.1080/17455030.2020.1810363.
- Ebrahimi, F. and Dabbagh, A. (2022), Mechanics of Multiscale Hybrid Nanocomposites, Elsevier.
- Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.ijengsci.2016.07.008.
- Ebrahimi, F. and Seyfi, A. (2022), "Wave propagation analysis of smart inhomogeneous piezoelectric nanosize beams rested on an elastic medium", Wave. Random Complex Media, 32(3), 1269-1288. https://doi.org/10.1080/17455030.2020.1817625.
- Ebrahimi, F. andBarati, M.R. (2017), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092.
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008.
- Ebrahimi, F., Dabbagh, A. and Taheri, M. (2021e), "Vibration analysis of porous metal foam plates rested on viscoelastic substrate", Eng. Comput., 37, 3727-3739. https://doi.org/10.1007/s00366-020-01031-w.
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019b), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porositydependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
- Ebrahimi, F., Dabbagh, A., Rastgoo, A. and Rabczuk, T. (2020), "Agglomeration effects on static stability analysis of multi-scale hybrid nanocomposite plates", Comput. Mater. Continua, 63(1), 41-64. https://doi.org/10.32604/cmc.2020.07947.
- Ebrahimi, F., Dehghan, M. and Seyfi, A, (2019b), "Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes", Adv. Nano Res., 7(1), 1. https://doi.org/10.12989/anr.2019.7.1.001.
- Ebrahimi, F., Enferadi, A. and Dabbagh, A (2022), "Wave dispersion behaviors of multi-scale CNT/Glass fiber/polymer nanocomposite laminated plates", Polym., 14(24), 5448. https://doi.org/10.3390/polym14245448.
- Ebrahimi, F., Ghazali, M. and Dabbagh, A. (2022a), "Hygrothermo-viscoelastic wave propagation analysis of FGM nanoshells via nonlocal strain gradient fractional time-space theory", Wave. Random Complex Media, 1-20. https://doi.org/10.1080/17455030.2022.2105978.
- Ebrahimi, F., Khosravi, K. and Dabbagh, A. (2021a), "A novel spatial-temporal nonlocal strain gradient theorem for wave dispersion characteristics of FGM nanoplates", Wave. Random Complex Media, 1-20. https://doi.org/10.1080/17455030.2021.1979272.
- Ebrahimi, F., Khosravi, K. and Dabbagh, A. (2021b), "Wave dispersion in viscoelastic FG nanobeams via a novel spatial-temporal nonlocal strain gradient framework", Wave. Random Complex Media, 1-23. https://doi.org/10.1080/17455030.2021.1970282.
- Ebrahimi, F., Nopour, R. and Dabbagh, A. (2022b), "Effects of polymer's viscoelastic properties and curved shape of the CNTs on the dynamic response of hybrid nanocomposite beams", Wave. Random Complex Media, 1-18. https://doi.org/10.1080/17455030.2022.2032475.
- Ebrahimi, F., Nopour, R. and Dabbagh, A. (2021a), "Effect of viscoelastic properties of polymer and wavy shape of the CNTs on the vibrational behaviors of CNT/glass fiber/polymer plates", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-021-01387-7.
- Ebrahimi, F., Nopour, R. and Dabbagh, A. (2021f), "Smart laminates with an auxetic ply rested on visco-Pasternak medium: Active control of the system's oscillation", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-021-01533-1.
- Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2019e), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293.
- Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019a), "A novel porosity-dependent homogenization procedure for wave dispersion in nonlocal strain gradient inhomogeneous nanobeams", Eur. Phys. J. Plus, 134(5), 1-11. https://doi.org/10.1140/epjp/i2019-12547-8.
- Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019a), "Dispersion of waves in FG porous nanoscale plates based on NSGT in thermal environment", Adv. Nano Res., 7(5), 325-335. https://doi.org/10.12989/anr.2019.7.5.325.
- Ebrahimi, F., Seyfi, A. and Teimouri, A. (2021d), "Torsional vibration analysis of scale-dependent non-circular graphene oxide powder-strengthened nanocomposite nanorods", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-021-01528-y.
- Ebrahimi, F., Seyfi, A., Nouraei, M. and Haghi, P. (2021c), "Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment", Wave. Random Complex Media, 1-19. https://doi.org/10.1080/17455030.2020.1847359.
- Fallah, A., Aghdam, M.M. and Kargarnovin, M.H. (2013), "Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method", Arch. Appl. Mech., 83(2), 177-191. https://doi.org/10.1007/s00419-012-0645-1.
- Ganapathi, M., Prakash, T. and Sundararajan, N. (2006), "Influence of functionally graded material on buckling of skew plates under mechanical loads", J. Eng. Mech., 132(8), 902-905. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:8(902).
- Ghannadpour, S.A.M., Ovesy, H.R. and Nassirnia, M. (2012), "Buckling analysis of functionally graded plates under thermal loadings using the finite strip method", Comput. Struct., 108-109, 93-99. https://doi.org/10.1016/j.compstruc.2012.02.011.
- Ghumare, S.M. and Sayyad, A.S. (2020), "Analytical solution using fifth order shear and normal deformation theory for FG plates resting on elastic foundation subjected to hygro-thermo-mechanical loading", Mater. Today: Proc., 21, 1089-1093. https://doi.org/10.1016/j.matpr.2020.01.010.
- Golabchi, H., Kolahchi, R. andBidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018), "Multiphasenanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026.
- Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026.
- Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
- Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.
- Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocompositefacesheets in hygrothermal environment", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
- Hosseini-Hashemi, S., Fadaee, M. and Atashipour, SR. (2011), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002.
- Hosseini-Hashemi, S., RokniDamavandiTaher, H., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008.
- Hu, Y. and Zhang, X. (2011), "Parametric vibrations and stability of a functionally graded plate", Mech. Based Des. Struct., 39(3), 367-377. https://doi.org/10.1080/15397734.2011.557970.
- Huang, X. and Shen, H. (2004), "Non-linear vibration and dynamic response of functionally graded plates in thermal environments", Int. J. Solid. Struct., 41(9-10), 2403-2427. https://doi.org/10.1016/j.ijsolstr.2003.11.012.
- Javaheri, R. and Eslami, MR. (2002), "Thermal buckling of functionally graded plates", AIAA J., 40(1), 162-169. https://doi.org/10.2514/2.1626.
- Kachapi, S.H.H. (2020), "Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell", Adv. Nano Res., 9(4), 277-294. https://doi.org/10.12989/anr.2019.7.5.325.
- Kar, V.R. and Panda, S.K. (2016), "Non-linear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chin. J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007.
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal post buckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125.
- Karama, M., Harb, B.A., Mistou, S. and Caperaa, S. (1998), "Bending, buckling and free vibration of laminated composite with a transverse shear stress continuity model", Compos. Part B, 29, 223-234. https://doi.org/10.1016/S1359-8368(97)00024-3.
- Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech.-A/Solid., 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.
- Keshtegar, B., Motezaker, M., Kolahchi, R. andTrung, N.T. (2020), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.
- Kim, Y.W. (2005), "Temperature dependent vibration analysis of functionally graded rectangular plates", J. Sound Vib., 284(3-5), 531-549. https://doi.org/10.1016/j.jsv.2004.06.043.
- Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
- Kolahchi, R., Keshtegar, B. and Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", J. Sandw. Struct. Mater., 24(1), 643-662. https://doi.org/10.1177/10996362211020388.
- Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020), "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656. https://doi.org/10.1016/j.ast.2019.105656.
- Leissa, A.W. (1973), "The free vibration of rectangular plates'', J. Sound Vib., 31(3), 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2.
- Li, Q., Iu, V. and Kou, K. (2009), "Three-dimensional vibration analysis of functionally graded material plates in thermal environment", J. Sound Vib., 324, 733-750. https://doi.org/10.1016/j.jsv.2009.02.036.
- Liew, K.M., Xiang, Y. and Kitipornchai, S. (1993), "Transverse vibration of thick rectangular plates-I. Comprehensive sets of boundary conditions", Comput. Struct., 49(1), 1-29. https://doi.org/10.1016/0045-7949(93)90122-T.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech.-T, ASME, 18(1), 31-38. https://doi.org/10.1115/1.4010217.
- Mirjavadi, S.S., Afshari, B.M., Barati, M.R. and Hamouda, A. M.S. (2020a), "Transient response of porous inhomogeneous nanobeams due to various impulsive loads based on nonlocal strain gradient elasticity", Int. J. Mech. Mater. Des., 16, 57-68. https://doi.org/10.1007/s10999-019-09452-2.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2022a), "Analysis of nonlinear vibrations of CNT-/fiberglassreinforced multi-scale truncated conical shell segments", Mech. Bas. Des. Struct. Mach., 50(6), 1-17. https://doi.org/10.1080/15397734.2020.1768866.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2022a), "Geometrically nonlinear vibration analysis of eccentrically stiffened porous functionally graded annular spherical shell segments", Mech. Bas. Des. Struct. Mach., 50(6), 1-15. https://doi.org/10.1080/15397734.2020.1771729.
- Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "Levy solution for buckling analysis of functionally graded rectangular plates", Appl. Compos. Mater., 17(2), 81-93. https://doi.org/10.1007/s10443-009-9100-z.
- Naj, R., Boroujerdy, M.S. and Eslami, M.R. (2008), "Thermal and mechanical instability of functionally graded truncated conical shells", Thin Wall. Struct., 46(1), 65-78. https://doi.org/10.1016/j.ijpvp.2008.12.006.
- Nebab, M., AitAtmane, H., Bennai, R. and Tahar, B. (2019), "Effect of non-linear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
- Nguyen, H.N., Hong, T.T., Vinh, P.V., Quang, N.D. and Thom, D.V. (2019), "A refined simple first-order shear deformation theory for static bending and free vibration analysis of advanced composite plates", Mater., 12(15), 2385. https://doi.org/10.3390/ma12152385.
- Nopour, R., Ebrahimi, F., Dabbagh, A. and Aghdam, M.M. (2022), "Nonlinear forced vibrations of three-phase nanocomposite shells considering matrix rheological behavior and nano-fiber waviness", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-022-01608-7.
- Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B: Eng., 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., BachirBouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Raju, K.K. and Hinton, E. (1980), "Natural frequencies and modes of rhombic Mindlin plates", Earthq. Eng. Struct. Dyn., 8(1), 55-62. https://doi.org/10.1002/eqe.4290080106.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, CRC Press.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech.-T, ASME, 12(2), 69-77. https://doi.org/10.1115/1.4009435.
- Sahu, P., Sharma, N. and Panda, S.K. (2020), "Numerical prediction and experimental validation of free vibration responses of hybrid composite (Glass/Carbon/Kevlar) curved panel structure", Compos. Struct., 241, 112073. https://doi.org/10.1016/j.compstruct.2020.112073.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
- Senjanovic, I., Vladimir, N. and Hadzic, N. (2014), "Modified Mindlin plate theory and shear locking-free finite element formulation", Mech. Res. Commun., 55, 95-104. https://doi.org/10.1016/j.mechrescom.2013.10.007.
- Seyfi, A. and Aghdam, M.M. (2021), "Vibrational behavior of temperature-dependent imperfect functionally graded plate lying on an elastic substrate", Mech. Bas. Des. Struct. Mach., 1-22. https://doi.org/10.1080/15397734.2021.1944189.
- Seyfi, A., Maleki, M., Chen, Z. and Ebrahimi, F. (2022), "A new higher-order shear deformation theory for frequency analysis of functionally graded porous plates", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 236(22), 11066-11080. https://doi.org/10.1177/09544062221106288.
- Seyfi, A., Teimouri, A. and Ebrahimi, F. (2021), "Scale-dependent torsional vibration response of non-circular nanoscale auxetic rods", Wave. Random Complex Media, 1-17. https://doi.org/10.1080/17455030.2021.1990441.
- Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Technol., 25(9), 2195-2209. https://doi.org/10.1007/s12206-011-0610-x.
- Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Brazil. Soc. Mech. Sci. Eng., 39(10), 3849-3861. https://doi.org/10.1007/s40430-017-0863-0.
- Shen, H.S. (2002), "Non-linear bending response of functionally graded plates subjected to transverse loads and in thermal environments", Int. J. Mech. Sci., 44(3), 561-584. https://doi.org/10.1016/S0020-7403(01)00103-5.
- Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNTreinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., 23(6), 623-631. https://doi.org/10.12989/scs.2017.23.6.623.
- Singh, V.K. and Panda, S.K. (2014), "Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels", Thin Wall. Struct., 85, 341-349. https://doi.org/10.1016/j.tws.2014.09.003.
- Singha, M.K., Prakash, T. and Ganapathi, M. (2011), "Finite element analysis of functionally graded plates under transverse load", Finite Elem. Anal. Des., 47(4), 453-460. https://doi.org/10.1016/j.finel.2010.12.001.
- Thai, H.T. and Choi, D.H. (2013a), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
- Thai, H.T. and Choi, D.H. (2013b), "A simple first-order shear deformation theory for laminated composite plates", Compos. Struct., 106, 754-763. https://doi.org/10.1016/j.compstruct.2013.06.013.
- Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech.-A/Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
- Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates And Shells, Vol. 2, McGraw-hill, New York.
- Tran, L.V., Ferreira, A.J.M. and Nguyen-Xuan, H. (2013), "Isogeometric analysis of functionally graded plates using higher-order shear deformation theory", Compos. Part B: Eng., 51, 368-383. https://doi.org/10.1016/j.compositesb.2013.02.045.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
- Yahea, H.T. and Majeed, W.I. (2021), "Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory", Compos. Mater. Eng., 3(3), 179-199. https://doi.org/10.12989/cme.2021.3.3.179.
- Yang, J. and Shen, H.S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound Vib., 255(3), 579-602. https://doi.org/10.1006/jsvi.2001.4161.
- Yin, S., Hale, J.S., Yu, T., Bui, T.Q. and Bordas, S.P. (2014), "Isogeometric locking-free plate element: A simple first order shear deformation theory for functionally graded plates", Compos. Struct., 118, 121-138. https://doi.org/10.1016/j.compstruct.2014.07.028.
- Yu, T.T., Yin, S., Bui, T.Q. and Hirose, S. (2015), "A simple FSDT-based isogeometric analysis for geometrically non-linear analysis of functionally graded plates", Finite Elem. Anal. Des., 96, 1-10. https://doi.org/10.1016/j.finel.2014.11.003.