DOI QR코드

DOI QR Code

Free vibration investigation of functionally graded plates with temperature-dependent properties resting on a viscoelastic foundation

  • Abdeldjebbar Tounsi (Industrial Engineering and Sustainable Development Laboratory, University of Rélizane, Faculty of Science & Technology, Mechanical Engineering Department) ;
  • Adda Hadj Mostefa (Industrial Engineering and Sustainable Development Laboratory, Department of Civil Engineering, University of Relizane, Faculty of Science & Technology) ;
  • Amina Attia (Engineering and Sustainable Development Laboratory, Faculty of science and Technology, Civil Engineering Department, University of Ain Temouchent) ;
  • Abdelmoumen Anis Bousahla (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi BelAbbes) ;
  • Fouad Bourada (Departement des Sciences et de la Technologie, Universite de Tissemsilt) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi BelAbbes) ;
  • Mohammed A. Al-Osta (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
  • Received : 2022.09.19
  • Accepted : 2023.02.13
  • Published : 2023.04.10

Abstract

The free vibration of temperature-dependent functionally graded plates (FGPs) resting on a viscoelastic foundation is investigated in this paper using a newly developed simple first-order shear deformation theory (FSDT). Unlike other first order shear deformation (FSDT) theories, the proposed model contains only four variables' unknowns in which the transverse shear stress and strain follow a parabolic distribution along the plates' thickness, and they vanish at the top and bottom surfaces of the plate by considering a new shape function. For this reason, the present theory requires no shear correction factor. Linear steady-state thermal loads and power-law material properties are supposed to be graded across the plate's thickness. Uniform, linear, non-linear, and sinusoidal thermal rises are applied at the two surfaces for simply supported FGP. Hamilton's principle and Navier's approach are utilized to develop motion equations and analytical solutions. The developed theory shows progress in predicting the frequencies of temperature-dependent FGP. Numerical research is conducted to explain the effect of the power law index, temperature fields, and damping coefficient on the dynamic behavior of temperature-dependent FGPs. It can be concluded that the equation and transformation of the proposed model are as simple as the FSDT.

Keywords

References

  1. Afshari, B.M., Mirjavadi, S.S. and Barati, M.R. (2022), "Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model", Adv. Concrete Constr., 13(5), 377-384. https://doi.org/10.12989/acc.2022.13.5.377.
  2. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  3. Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2022), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 38, 356-377. https://doi.org/10.1007/s00366-020-01070-3.
  4. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021a), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech.-A/Solid., 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.
  5. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021b), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictivelayers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
  6. Al-Furjan, M.S.H., Hajmohammad, M.H., Shen, X., Rajak, D.K. and Kolahchi, R. (2021), "Evaluation of tensile strength and elastic modulus of 7075-T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method", J. Alloy. Compound., 886, 161261. https://doi.org/10.1016/j.jallcom.2021.161261.
  7. Al-Furjan, M.S.H., Kolahchi, R., Shan, L., Hajmohammad, M.H., Farrokhian, A. and Shen, X. (2022d), "Slamming impact induced hydrodynamic response in wave-piercing catamaran beam elements with controller", Ocean Eng., 266, 112908. https://doi.org/10.1016/j.oceaneng.2022.112908.
  8. Al-Furjan, M.S.H., Kong, X.S., Shan, L., SoleimaniJafari, G., Farrokhian, A., Shen, X. and Rajak, D.K. (2022h), "Influence of LPRE on the size-dependent phase velocity of sandwich beam including FG porous and smart nanocomposite layers", Polym. Compos., 43(10), 7390-7402. https://doi.org/10.1002/pc.26820.
  9. Al-Furjan, M.S.H., Qi, Z.H., Shan, L., Farrokhian, A., Shen, X. and Kolahchi, R. (2022c), "Nano supercapacitors with practical application in aerospace technology: Vibration and wave propagation analysis", Aerosp. Sci. Technol., 133, 108082. https://doi.org/10.1016/j.ast.2022.108082.
  10. Al-Furjan, M.S.H., Shan, L., Shen, X., Kolahchi, R. and Rajak, D.K. (2022b), "Combination of FEM-DQM for nonlinear mechanics of porous GPL-reinforced sandwich nanoplates based on various theories", Thin Wall. Struct., 178, 109495. https://doi.org/10.1016/j.tws.2022.109495.
  11. AlFurjan, M.S.H., Shan, L., Shen, X., Zarei, M.S., Hajmohammad, M.H. and Kolahchi, R. (2022a), "A review on fabrication techniques and tensile properties of glass, carbon, and kevlar fiber reinforced polymer composites", J. Mater. Res. Technol., 19, 2930-2959. https://doi.org/10.1016/j.jmrt.2022.0.008.
  12. Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022g), "On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave. Random Complex Media, 1-25. https://doi.org/10.1080/17455030.2022.2030499.
  13. Al-Furjan, M.S.H., Yang, Y., Farrokhian, A., Shen, X., Kolahchi, R. and Rajak, D.K. (2022f), "Dynamic instability of nanocomposite piezoelectric-leptadeniapyrotechnica rheological elastomer-porous functionally graded materials micro viscoelastic beams at various strain gradient higher-order theories", Polym. Compos., 43(1), 282-298. https://doi.org/10.1002/pc.26373.
  14. Al-Furjan, M.S.H., Yin, C., Shen, X., Kolahchi, R., Zarei, M.S. and Hajmohammad, M.H. (2022e), "Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrate", Mech. Syst. Signal Pr., 178, 109269. https://doi.org/10.1016/j.ymssp.2022.109269.
  15. Amani, M.A., Ebrahimi, F., Dabbagh, A., Rastgoo, A. and Nasiri, M.M. (2021), "A machine learning-based model for the estimation of the temperature-dependent moduli of graphene oxide reinforced nanocomposites and its application in a thermally affected buckling analysis", Eng. Comput., 37, 2245-2255. https://doi.org/10.1007/s00366-020-00945-9.
  16. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18, 187-212. https://doi.org/10.12989/scs.2015.18.1.187.
  17. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
  18. Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020.
  19. Bayat, M., Saleem, M., Sahari, B.B., Hamouda, A.M.S. and Mahdi, E. (2009), "Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads", Int. J. Press. Ves. Pip., 86(6), 357-372. https://doi.org/10.1016/j.ijpvp.2008.12.006.
  20. Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of functionally graded thin rectangular plates resting on Winkler elastic foundation with general boundary conditions using Rayleigh-Ritz method", Int. J. Appl. Mech., 6(04), 1450043. https://doi.org/10.1142/S1758825114500434.
  21. Chen, C.S. (2005), "Non-linear vibration of a shear deformable functionally graded plate", Compos. Struct., 68(3), 295-302. https://doi.org/10.1016/j.compstruct.2004.03.022.
  22. Chu, C., Al-Furjan, M.S.H., Kolahchi, R. and Farrokhian, A. (2022a), "A nonlinear Chebyshev-based collocation technique to frequency analysis of thermally pre/post-buckled third-order circular sandwich plates", Commun. Nonlin. Sci. Numer. Simul., 128, 107056. https://doi.org/10.1016/j.cnsns.2022.107056.
  23. Chu, C., Shan, L., Al-Furjan, M.S.H., Zarei, M.S., Hajmohammad, M.H. and Kolahchi, R. (2022b), "Experimental study for the effect of hole notched in fracture mechanics of GLARE and GFRP composites subjected to quasi-static loading", Theor. Appl. Fract. Mech., 122, 103624. https://doi.org/10.1016/j.tafmec.2022.103624.
  24. Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Abdel Wahab, M. (2022), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condens. Mat., 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
  25. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porouscellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  26. Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.compstruct.2015.03.023.
  27. Dabbagh, A. and Ebrahimi, F. (2021), "Postbuckling analysis of meta-nanocomposite beams by considering the CNTs' agglomeration", Eur. Phys. J. Plus, 136, 1168. https://doi.org/10.1140/epjp/s13360-021-02160-x.
  28. Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2022), "Post-buckling analysis of imperfect multi-scale hybrid nanocomposite beams rested on a nonlinear stiff substrate", Eng. Comput., 38, 301-314. https://doi.org/10.1007/s00366-020-01064-1.
  29. Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2021), "Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory", Eng. Comput., 37, 2225-2244. https://doi.org/10.1007/s00366-020-00939-7.
  30. Damanpack, A.R., Bodaghi, M., hassemi, H. and Sayehbani, M. (2013), "Boundary element method applied to the bending analysis of thin functionally graded plates", Lat. Am. J. Solid. Struct., 10(3), 549-570. https://doi.org/10.1590/S1679-78252013000300006.
  31. Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
  32. Della Croce, L. and Venini, P. (2004), "Finite elements for functionally graded Reissner-Mindlin plates", Comput. Meth. Appl. Mech. Eng., 193(9-11), 705-725. https://doi.org/10.1016/j.cma.2003.09.014.
  33. Do, T.V., Bui, T.Q., Yu, T.T., Pham, D.T. and Nguyen, C.T. (2017), "Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment", J. Comput. Sci., 21, 164-181. https://doi.org/10.1016/j.jocs.2017.06.015.
  34. Duc, N.D. and Tung, H.V. (2010), "Mechanical and thermal postbuckling of shear-deformable FGM plates with temperature-dependent properties", Mech. Compos. Mater., 46(5), 461-476. https://doi.org/10.1007/s11029-010-9163-9.
  35. Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177/1077546316646239.
  36. Ebrahimi, F. and Dabbagh, A. (2018a), "Effect of humid-thermal environment on wave dispersion characteristics of single-layered graphene sheets", Appl. Phys. A, 124(4), 1-11. https://doi.org/10.1007/s00339-018-1734-y.
  37. Ebrahimi, F. and Dabbagh, A. (2018b), "On wave dispersion characteristics of double-layered graphene sheets in thermal environments", J. Electromag. Wave. Appl., 32(15), 1869-1888. https://doi.org/10.1080/09205071.2017.1417918.
  38. Ebrahimi, F. and Dabbagh, A. (2018c), "On modeling wave dispersion characteristics of protein lipid nanotubules", J. Biomech., 77, 1-7. https://doi.org/10.1016/j.jbiomech.2018.05.038.
  39. Ebrahimi, F. and Dabbagh, A. (2018d), "NSGT-based acoustical wave dispersion characteristics of thermo-magnetically actuated double-nanobeam systems", Struct. Eng. Mech., 68(6), 701-711. https://doi.org/10.12989/sem.2018.68.6.701.
  40. Ebrahimi, F. and Dabbagh, A. (2019a), "Wave dispersion characteristics of heterogeneous nanoscale beams via a novel porosity-based homogenization scheme", Eur. Phys. J. Plus, 134(4), 1-8. https://doi.org/10.1140/epjp/i2019-12510-9.
  41. Ebrahimi, F. and Dabbagh, A. (2019b), "A novel porosity-based homogenization scheme for propagation of waves in axiallyexcited FG nanobeams", Adv. Nano Res., 7(6), 379-390. https://doi.org/10.12989/anr.2019.7.6.379.
  42. Ebrahimi, F. and Dabbagh, A. (2019c), Wave Propagation Analysis of Smart Nanostructures, 1st Edition, CRC Press.
  43. Ebrahimi, F. and Dabbagh, A. (2019d), "Application of the nonlocal strain gradient elasticity on the wave dispersion behaviors of inhomogeneous nanosize beams", Eur. Phys. J. Plus, 134(3), 112. https://doi.org/10.1140/epjp/i2019-12464-x.
  44. Ebrahimi, F. and Dabbagh, A. (2020), Mechanics of Nanocomposites: Homogenization and Analysis, CRC Press.
  45. Ebrahimi, F. and Dabbagh, A. (2021a), "Magnetic field effects on thermally affected propagation of acoustical waves in rotary double-nanobeam systems", Wave. Random Complex Media, 31(1), 25-45. https://doi.org/10.1080/17455030.2018.1558308.
  46. Ebrahimi, F. and Dabbagh, A. (2021b), "Vibration analysis of fluid-conveying multi-scale hybrid nanocomposite shells with respect to agglomeration of nanofillers", Def. Technol., 17(1), 212-225. https://doi.org/10.1016/j.dt.2020.01.007.
  47. Ebrahimi, F. and Dabbagh, A. (2022), "Vibration analysis of multiscale hybrid nanocomposite shells by considering nanofillers' aggregation", Wave. Random Complex Media, 32(3), 1-19. https://doi.org/10.1080/17455030.2020.1810363.
  48. Ebrahimi, F. and Dabbagh, A. (2022), Mechanics of Multiscale Hybrid Nanocomposites, Elsevier.
  49. Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.ijengsci.2016.07.008.
  50. Ebrahimi, F. and Seyfi, A. (2022), "Wave propagation analysis of smart inhomogeneous piezoelectric nanosize beams rested on an elastic medium", Wave. Random Complex Media, 32(3), 1269-1288. https://doi.org/10.1080/17455030.2020.1817625.
  51. Ebrahimi, F. andBarati, M.R. (2017), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092.
  52. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008.
  53. Ebrahimi, F., Dabbagh, A. and Taheri, M. (2021e), "Vibration analysis of porous metal foam plates rested on viscoelastic substrate", Eng. Comput., 37, 3727-3739. https://doi.org/10.1007/s00366-020-01031-w.
  54. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019b), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porositydependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  55. Ebrahimi, F., Dabbagh, A., Rastgoo, A. and Rabczuk, T. (2020), "Agglomeration effects on static stability analysis of multi-scale hybrid nanocomposite plates", Comput. Mater. Continua, 63(1), 41-64. https://doi.org/10.32604/cmc.2020.07947.
  56. Ebrahimi, F., Dehghan, M. and Seyfi, A, (2019b), "Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes", Adv. Nano Res., 7(1), 1. https://doi.org/10.12989/anr.2019.7.1.001.
  57. Ebrahimi, F., Enferadi, A. and Dabbagh, A (2022), "Wave dispersion behaviors of multi-scale CNT/Glass fiber/polymer nanocomposite laminated plates", Polym., 14(24), 5448. https://doi.org/10.3390/polym14245448.
  58. Ebrahimi, F., Ghazali, M. and Dabbagh, A. (2022a), "Hygrothermo-viscoelastic wave propagation analysis of FGM nanoshells via nonlocal strain gradient fractional time-space theory", Wave. Random Complex Media, 1-20. https://doi.org/10.1080/17455030.2022.2105978.
  59. Ebrahimi, F., Khosravi, K. and Dabbagh, A. (2021a), "A novel spatial-temporal nonlocal strain gradient theorem for wave dispersion characteristics of FGM nanoplates", Wave. Random Complex Media, 1-20. https://doi.org/10.1080/17455030.2021.1979272.
  60. Ebrahimi, F., Khosravi, K. and Dabbagh, A. (2021b), "Wave dispersion in viscoelastic FG nanobeams via a novel spatial-temporal nonlocal strain gradient framework", Wave. Random Complex Media, 1-23. https://doi.org/10.1080/17455030.2021.1970282.
  61. Ebrahimi, F., Nopour, R. and Dabbagh, A. (2022b), "Effects of polymer's viscoelastic properties and curved shape of the CNTs on the dynamic response of hybrid nanocomposite beams", Wave. Random Complex Media, 1-18. https://doi.org/10.1080/17455030.2022.2032475.
  62. Ebrahimi, F., Nopour, R. and Dabbagh, A. (2021a), "Effect of viscoelastic properties of polymer and wavy shape of the CNTs on the vibrational behaviors of CNT/glass fiber/polymer plates", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-021-01387-7.
  63. Ebrahimi, F., Nopour, R. and Dabbagh, A. (2021f), "Smart laminates with an auxetic ply rested on visco-Pasternak medium: Active control of the system's oscillation", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-021-01533-1.
  64. Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2019e), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293.
  65. Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019a), "A novel porosity-dependent homogenization procedure for wave dispersion in nonlocal strain gradient inhomogeneous nanobeams", Eur. Phys. J. Plus, 134(5), 1-11. https://doi.org/10.1140/epjp/i2019-12547-8.
  66. Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019a), "Dispersion of waves in FG porous nanoscale plates based on NSGT in thermal environment", Adv. Nano Res., 7(5), 325-335. https://doi.org/10.12989/anr.2019.7.5.325.
  67. Ebrahimi, F., Seyfi, A. and Teimouri, A. (2021d), "Torsional vibration analysis of scale-dependent non-circular graphene oxide powder-strengthened nanocomposite nanorods", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-021-01528-y.
  68. Ebrahimi, F., Seyfi, A., Nouraei, M. and Haghi, P. (2021c), "Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment", Wave. Random Complex Media, 1-19. https://doi.org/10.1080/17455030.2020.1847359.
  69. Fallah, A., Aghdam, M.M. and Kargarnovin, M.H. (2013), "Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method", Arch. Appl. Mech., 83(2), 177-191. https://doi.org/10.1007/s00419-012-0645-1.
  70. Ganapathi, M., Prakash, T. and Sundararajan, N. (2006), "Influence of functionally graded material on buckling of skew plates under mechanical loads", J. Eng. Mech., 132(8), 902-905. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:8(902).
  71. Ghannadpour, S.A.M., Ovesy, H.R. and Nassirnia, M. (2012), "Buckling analysis of functionally graded plates under thermal loadings using the finite strip method", Comput. Struct., 108-109, 93-99. https://doi.org/10.1016/j.compstruc.2012.02.011.
  72. Ghumare, S.M. and Sayyad, A.S. (2020), "Analytical solution using fifth order shear and normal deformation theory for FG plates resting on elastic foundation subjected to hygro-thermo-mechanical loading", Mater. Today: Proc., 21, 1089-1093. https://doi.org/10.1016/j.matpr.2020.01.010.
  73. Golabchi, H., Kolahchi, R. andBidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  74. Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
  75. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018), "Multiphasenanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026.
  76. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026.
  77. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  78. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.
  79. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocompositefacesheets in hygrothermal environment", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  80. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, SR. (2011), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002.
  81. Hosseini-Hashemi, S., RokniDamavandiTaher, H., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008.
  82. Hu, Y. and Zhang, X. (2011), "Parametric vibrations and stability of a functionally graded plate", Mech. Based Des. Struct., 39(3), 367-377. https://doi.org/10.1080/15397734.2011.557970.
  83. Huang, X. and Shen, H. (2004), "Non-linear vibration and dynamic response of functionally graded plates in thermal environments", Int. J. Solid. Struct., 41(9-10), 2403-2427. https://doi.org/10.1016/j.ijsolstr.2003.11.012.
  84. Javaheri, R. and Eslami, MR. (2002), "Thermal buckling of functionally graded plates", AIAA J., 40(1), 162-169. https://doi.org/10.2514/2.1626.
  85. Kachapi, S.H.H. (2020), "Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell", Adv. Nano Res., 9(4), 277-294. https://doi.org/10.12989/anr.2019.7.5.325.
  86. Kar, V.R. and Panda, S.K. (2016), "Non-linear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chin. J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007.
  87. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal post buckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125.
  88. Karama, M., Harb, B.A., Mistou, S. and Caperaa, S. (1998), "Bending, buckling and free vibration of laminated composite with a transverse shear stress continuity model", Compos. Part B, 29, 223-234. https://doi.org/10.1016/S1359-8368(97)00024-3.
  89. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech.-A/Solid., 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.
  90. Keshtegar, B., Motezaker, M., Kolahchi, R. andTrung, N.T. (2020), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.
  91. Kim, Y.W. (2005), "Temperature dependent vibration analysis of functionally graded rectangular plates", J. Sound Vib., 284(3-5), 531-549. https://doi.org/10.1016/j.jsv.2004.06.043.
  92. Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  93. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", J. Sandw. Struct. Mater., 24(1), 643-662. https://doi.org/10.1177/10996362211020388.
  94. Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020), "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656. https://doi.org/10.1016/j.ast.2019.105656.
  95. Leissa, A.W. (1973), "The free vibration of rectangular plates'', J. Sound Vib., 31(3), 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2.
  96. Li, Q., Iu, V. and Kou, K. (2009), "Three-dimensional vibration analysis of functionally graded material plates in thermal environment", J. Sound Vib., 324, 733-750. https://doi.org/10.1016/j.jsv.2009.02.036.
  97. Liew, K.M., Xiang, Y. and Kitipornchai, S. (1993), "Transverse vibration of thick rectangular plates-I. Comprehensive sets of boundary conditions", Comput. Struct., 49(1), 1-29. https://doi.org/10.1016/0045-7949(93)90122-T.
  98. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  99. Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
  100. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
  101. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech.-T, ASME, 18(1), 31-38. https://doi.org/10.1115/1.4010217.
  102. Mirjavadi, S.S., Afshari, B.M., Barati, M.R. and Hamouda, A. M.S. (2020a), "Transient response of porous inhomogeneous nanobeams due to various impulsive loads based on nonlocal strain gradient elasticity", Int. J. Mech. Mater. Des., 16, 57-68. https://doi.org/10.1007/s10999-019-09452-2.
  103. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2022a), "Analysis of nonlinear vibrations of CNT-/fiberglassreinforced multi-scale truncated conical shell segments", Mech. Bas. Des. Struct. Mach., 50(6), 1-17. https://doi.org/10.1080/15397734.2020.1768866.
  104. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2022a), "Geometrically nonlinear vibration analysis of eccentrically stiffened porous functionally graded annular spherical shell segments", Mech. Bas. Des. Struct. Mach., 50(6), 1-15. https://doi.org/10.1080/15397734.2020.1771729.
  105. Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "Levy solution for buckling analysis of functionally graded rectangular plates", Appl. Compos. Mater., 17(2), 81-93. https://doi.org/10.1007/s10443-009-9100-z.
  106. Naj, R., Boroujerdy, M.S. and Eslami, M.R. (2008), "Thermal and mechanical instability of functionally graded truncated conical shells", Thin Wall. Struct., 46(1), 65-78. https://doi.org/10.1016/j.ijpvp.2008.12.006.
  107. Nebab, M., AitAtmane, H., Bennai, R. and Tahar, B. (2019), "Effect of non-linear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
  108. Nguyen, H.N., Hong, T.T., Vinh, P.V., Quang, N.D. and Thom, D.V. (2019), "A refined simple first-order shear deformation theory for static bending and free vibration analysis of advanced composite plates", Mater., 12(15), 2385. https://doi.org/10.3390/ma12152385.
  109. Nopour, R., Ebrahimi, F., Dabbagh, A. and Aghdam, M.M. (2022), "Nonlinear forced vibrations of three-phase nanocomposite shells considering matrix rheological behavior and nano-fiber waviness", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-022-01608-7.
  110. Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B: Eng., 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004.
  111. Rachedi, M.A., Benyoucef, S., Bouhadra, A., BachirBouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
  112. Raju, K.K. and Hinton, E. (1980), "Natural frequencies and modes of rhombic Mindlin plates", Earthq. Eng. Struct. Dyn., 8(1), 55-62. https://doi.org/10.1002/eqe.4290080106.
  113. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, CRC Press.
  114. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech.-T, ASME, 12(2), 69-77. https://doi.org/10.1115/1.4009435.
  115. Sahu, P., Sharma, N. and Panda, S.K. (2020), "Numerical prediction and experimental validation of free vibration responses of hybrid composite (Glass/Carbon/Kevlar) curved panel structure", Compos. Struct., 241, 112073. https://doi.org/10.1016/j.compstruct.2020.112073.
  116. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
  117. Senjanovic, I., Vladimir, N. and Hadzic, N. (2014), "Modified Mindlin plate theory and shear locking-free finite element formulation", Mech. Res. Commun., 55, 95-104. https://doi.org/10.1016/j.mechrescom.2013.10.007.
  118. Seyfi, A. and Aghdam, M.M. (2021), "Vibrational behavior of temperature-dependent imperfect functionally graded plate lying on an elastic substrate", Mech. Bas. Des. Struct. Mach., 1-22. https://doi.org/10.1080/15397734.2021.1944189.
  119. Seyfi, A., Maleki, M., Chen, Z. and Ebrahimi, F. (2022), "A new higher-order shear deformation theory for frequency analysis of functionally graded porous plates", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 236(22), 11066-11080. https://doi.org/10.1177/09544062221106288.
  120. Seyfi, A., Teimouri, A. and Ebrahimi, F. (2021), "Scale-dependent torsional vibration response of non-circular nanoscale auxetic rods", Wave. Random Complex Media, 1-17. https://doi.org/10.1080/17455030.2021.1990441.
  121. Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Technol., 25(9), 2195-2209. https://doi.org/10.1007/s12206-011-0610-x.
  122. Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Brazil. Soc. Mech. Sci. Eng., 39(10), 3849-3861. https://doi.org/10.1007/s40430-017-0863-0.
  123. Shen, H.S. (2002), "Non-linear bending response of functionally graded plates subjected to transverse loads and in thermal environments", Int. J. Mech. Sci., 44(3), 561-584. https://doi.org/10.1016/S0020-7403(01)00103-5.
  124. Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNTreinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., 23(6), 623-631. https://doi.org/10.12989/scs.2017.23.6.623.
  125. Singh, V.K. and Panda, S.K. (2014), "Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels", Thin Wall. Struct., 85, 341-349. https://doi.org/10.1016/j.tws.2014.09.003.
  126. Singha, M.K., Prakash, T. and Ganapathi, M. (2011), "Finite element analysis of functionally graded plates under transverse load", Finite Elem. Anal. Des., 47(4), 453-460. https://doi.org/10.1016/j.finel.2010.12.001.
  127. Thai, H.T. and Choi, D.H. (2013a), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
  128. Thai, H.T. and Choi, D.H. (2013b), "A simple first-order shear deformation theory for laminated composite plates", Compos. Struct., 106, 754-763. https://doi.org/10.1016/j.compstruct.2013.06.013.
  129. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech.-A/Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
  130. Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates And Shells, Vol. 2, McGraw-hill, New York.
  131. Tran, L.V., Ferreira, A.J.M. and Nguyen-Xuan, H. (2013), "Isogeometric analysis of functionally graded plates using higher-order shear deformation theory", Compos. Part B: Eng., 51, 368-383. https://doi.org/10.1016/j.compositesb.2013.02.045.
  132. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  133. Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
  134. Yahea, H.T. and Majeed, W.I. (2021), "Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory", Compos. Mater. Eng., 3(3), 179-199. https://doi.org/10.12989/cme.2021.3.3.179.
  135. Yang, J. and Shen, H.S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound Vib., 255(3), 579-602. https://doi.org/10.1006/jsvi.2001.4161.
  136. Yin, S., Hale, J.S., Yu, T., Bui, T.Q. and Bordas, S.P. (2014), "Isogeometric locking-free plate element: A simple first order shear deformation theory for functionally graded plates", Compos. Struct., 118, 121-138. https://doi.org/10.1016/j.compstruct.2014.07.028.
  137. Yu, T.T., Yin, S., Bui, T.Q. and Hirose, S. (2015), "A simple FSDT-based isogeometric analysis for geometrically non-linear analysis of functionally graded plates", Finite Elem. Anal. Des., 96, 1-10. https://doi.org/10.1016/j.finel.2014.11.003.