DOI QR코드

DOI QR Code

ON REVERSIBLE ℤ2-DOUBLE CYCLIC CODES

  • Nupur Patanker (Department of Mathematics Indian Institute of Science Education and Research)
  • Received : 2022.03.11
  • Accepted : 2022.08.01
  • Published : 2023.03.31

Abstract

A binary linear code is said to be a ℤ2-double cyclic code if its coordinates can be partitioned into two subsets such that any simultaneous cyclic shift of the coordinates of the subsets leaves the code invariant. These codes were introduced in [6]. A ℤ2-double cyclic code is called reversible if reversing the order of the coordinates of the two subsets leaves the code invariant. In this note, we give necessary and sufficient conditions for a ℤ2-double cyclic code to be reversible. We also give a relation between reversible ℤ2-double cyclic code and LCD ℤ2-double cyclic code for the separable case and we present a few examples to show that such a relation doesn't hold in the non-separable case. Furthermore, we list examples of reversible ℤ2-double cyclic codes of length ≤ 10.

Keywords

Acknowledgement

The author is supported by NBHM, DAE, Govt. of India.

References

  1. T. Abualrub, M. F. Ezerman, P. Seneviratne, and P. Sole, Skew generalized quasi-cyclic codes, TWMS J. Pure Appl. Math. 9 (2018), no. 2, 123-134.
  2. T. Abualrub and I. Siap, Reversible cyclic codes over Z4, Australas. J. Combin. 38 (2007), 195-205.
  3. N. Aydin, T. Guidotti, and P. Liu, Good classical and quantum codes from multi-twisted codes, preprint arXiv:2008.07037v1 [cs.IT].
  4. S. Bathala and P. Seneviratne, Some results on 𝔽4[v]-double cyclic codes, Comput. Appl. Math. 40 (2021), no. 2, Paper No. 64, 17 pp. https://doi.org/10.1007/s40314-021-01428-3
  5. S. Bhowmick, A. Fotue-Tabue, E. Martinez-Moro, R. Bandi, and S. Bagchi, Do non-free LCD codes over finite commutative Frobenius rings exist?, Des. Codes Cryptogr. 88 (2020), no. 5, 825-840. https://doi.org/10.1007/s10623-019-00713-x
  6. J. Borges, C. Fernandez-Cordoba, and R. Ten-Valls, ℤ2-double cyclic codes, Des. Codes Cryptogr. 86 (2018), no. 3, 463-479. https://doi.org/10.1007/s10623-017-0334-8
  7. Y. Cao, Structural properties and enumeration of 1-generator generalized quasi-cyclic codes, Des. Codes Cryptogr. 60 (2011), no. 1, 67-79. https://doi.org/10.1007/s10623-010-9417-5
  8. L. Chen, J. Li, and Z. Sun, Reversible codes and its application to reversible DNA codes over 𝔽4k, preprint arXiv:1806.04367v1 [cs.IT].
  9. P. K. Das and V. Tyagi, Reversible and (n1, n2)-blockwise reversible code, Int. J. Algebra 6 (2012), no. 1-4, 185-191.
  10. H. Q. Dinh and S. R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (2004), no. 8, 1728-1744. https://doi.org/10.1109/TIT.2004.831789
  11. S. T. Dougherty, J. Gildea, A. Korban, and A. M. Roberts, Group LCD and group reversible LCD codes, Finite Fields Appl. 83 (2022), Paper No. 102079. https://doi.org/10.1016/j.ffa.2022.102079
  12. R. T. Eldin and H. Matsui, On reversibility and self-duality for some classes of quasicyclic codes, IEEE Access 8 (2020), 143285-143293. https://doi.org/10.1109/ACCESS.2020.3013958
  13. M. Esmaeili and S. Yari, Generalized quasi-cyclic codes: structural properties and code construction, Appl. Algebra Engrg. Comm. Comput. 20 (2009), no. 2, 159-173. https://doi.org/10.1007/s00200-009-0095-3
  14. Y. Gao, J. Gao, T. Wu, and F. Fu, 1-generator quasi-cyclic and generalized quasi-cyclic codes over the ring ${\frac{\mathbb{Z}_4[u]}{}}$, Appl. Algebra Engrg. Comm. Comput. 28 (2017), no. 6, 457-467. https://doi.org/10.1007/s00200-017-0315-1
  15. J. Gao, M. Shi, T. Wu, and F. Fu, On double cyclic codes over Z4, Finite Fields Appl. 39 (2016), 233-250. https://doi.org/10.1016/j.ffa.2016.02.003
  16. C. Guneri, F. Ozbudak, B. Ozkaya, E. Sacikara, Z. Sepasdar, and P. Sole, Structure and performance of generalized quasi-cyclic codes, Finite Fields Appl. 47 (2017), 183-202. https://doi.org/10.1016/j.ffa.2017.06.005
  17. H. Islam and O. Prakash, Construction of reversible cyclic codes over ℤpk, J. Discrete Math. Sci. Cryptography. https://doi.org/10.1080/09720529.2020.1815341
  18. A. S. Karbaski, T. Abualrub, and S. T. Dougherty, Double quadratic residue codes and self-dual double cyclic codes, Appl. Algebra Engrg. Comm. Comput. 33 (2022), no. 2, 91-115. https://doi.org/10.1007/s00200-020-00437-9
  19. J. Kaur, R. Sehmi, and S. Dutt, Reversible complement cyclic codes over Galois rings with application to DNA codes, Discrete Appl. Math. 280 (2020), 162-170. https://doi.org/10.1016/j.dam.2020.01.004
  20. S. Li, C. Ding, and H. Liu, A family of reversible BCH codes, preprint arXiv:1608.02169v1 [cs.IT].
  21. J. L. Massey, Reversible codes, Information and Control 7 (1964), 369-380. https://doi.org/10.1016/S0019-9958(64)90438-3
  22. H. Mostafanasab, Triple cyclic codes over ℤ2, Palest. J. Math. 6 (2017), Special Issue II, 123-134.
  23. S. K. Muttoo and S. Lal, A reversible code over GF(q), Kybernetika (Prague) 22 (1986), no. 1, 85-91.
  24. E. S. Oztas, B. Yildiz, and I. Siap, A novel approach for constructing reversible codes and applications to DNA codes over the ring 𝔽2[u]/(u2k - 1), Finite Fields Appl. 46 (2017), 217-234. https://doi.org/10.1016/j.ffa.2017.04.001
  25. B. Pang, S. Zhu, and Z. Sun, On LCD negacyclic codes over finite fields, J. Syst. Sci. Complex. 31 (2018), no. 4, 1065-1077. https://doi.org/10.1007/s11424-017-6301-7
  26. N. Patanker and S. K. Singh, Weight distribution of a subclass of ℤ2-double cyclic codes, Finite Fields Appl. 57 (2019), 287-308. https://doi.org/10.1016/j.ffa.2019.03.003
  27. O. Prakash, S. Patel, and S. Yadav, Reversible cyclic codes over some finite rings and their application to DNA codes, Comput. Appl. Math. 40 (2021), no. 7, Paper No. 242, 17 pp. https://doi.org/10.1007/s40314-021-01635-y
  28. I. Siap and N. Kulhan, The structure of generalized quasi cyclic codes, Appl. Math. E-Notes 5 (2005), 24-30.
  29. B. Srinivasulu and M. Bhaintwal, ℤ2-triple cyclic codes and their duals, Eur. J. Pure Appl. Math. 10 (2017), no. 2, 392-409.
  30. K. K. Tzeng and C. R. P. Hartmann, On the minimum distance of certain reversible cyclic codes, IEEE Trans. Inform. Theory IT-16 (1970), 644-646. https://doi.org/10.1109/tit.1970.1054517
  31. T. Wu, J. Gao, and F.-W. Fu, 1-generator generalized quasi-cyclic codes over ℤ4, Cryptogr. Commun. 9 (2017), no. 2, 291-299. https://doi.org/10.1007/s12095-015-0175-0
  32. X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math. 126 (1994), no. 1-3, 391-393. https://doi.org/10.1016/0012-365X(94)90283-6
  33. T. Yao, M. Shi, and P. Sole, Double cyclic codes over 𝔽q+u𝔽q+u2𝔽q, Int. J. Inf. Coding Theory 3 (2015), no. 2, 145-157. https://doi.org/10.1504/IJICOT.2015.072637
  34. T. Yao, S. Zhu, and B. Pang, Triple cyclic codes over 𝔽q + u𝔽q, Internat. J. Found. Comput. Sci. 32 (2021), no. 2, 115-135. https://doi.org/10.1142/S0129054121500064