Acknowledgement
The author is supported by NBHM, DAE, Govt. of India.
References
- T. Abualrub, M. F. Ezerman, P. Seneviratne, and P. Sole, Skew generalized quasi-cyclic codes, TWMS J. Pure Appl. Math. 9 (2018), no. 2, 123-134.
- T. Abualrub and I. Siap, Reversible cyclic codes over Z4, Australas. J. Combin. 38 (2007), 195-205.
- N. Aydin, T. Guidotti, and P. Liu, Good classical and quantum codes from multi-twisted codes, preprint arXiv:2008.07037v1 [cs.IT].
- S. Bathala and P. Seneviratne, Some results on 𝔽4[v]-double cyclic codes, Comput. Appl. Math. 40 (2021), no. 2, Paper No. 64, 17 pp. https://doi.org/10.1007/s40314-021-01428-3
- S. Bhowmick, A. Fotue-Tabue, E. Martinez-Moro, R. Bandi, and S. Bagchi, Do non-free LCD codes over finite commutative Frobenius rings exist?, Des. Codes Cryptogr. 88 (2020), no. 5, 825-840. https://doi.org/10.1007/s10623-019-00713-x
- J. Borges, C. Fernandez-Cordoba, and R. Ten-Valls, ℤ2-double cyclic codes, Des. Codes Cryptogr. 86 (2018), no. 3, 463-479. https://doi.org/10.1007/s10623-017-0334-8
- Y. Cao, Structural properties and enumeration of 1-generator generalized quasi-cyclic codes, Des. Codes Cryptogr. 60 (2011), no. 1, 67-79. https://doi.org/10.1007/s10623-010-9417-5
- L. Chen, J. Li, and Z. Sun, Reversible codes and its application to reversible DNA codes over 𝔽4k, preprint arXiv:1806.04367v1 [cs.IT].
- P. K. Das and V. Tyagi, Reversible and (n1, n2)-blockwise reversible code, Int. J. Algebra 6 (2012), no. 1-4, 185-191.
- H. Q. Dinh and S. R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (2004), no. 8, 1728-1744. https://doi.org/10.1109/TIT.2004.831789
- S. T. Dougherty, J. Gildea, A. Korban, and A. M. Roberts, Group LCD and group reversible LCD codes, Finite Fields Appl. 83 (2022), Paper No. 102079. https://doi.org/10.1016/j.ffa.2022.102079
- R. T. Eldin and H. Matsui, On reversibility and self-duality for some classes of quasicyclic codes, IEEE Access 8 (2020), 143285-143293. https://doi.org/10.1109/ACCESS.2020.3013958
- M. Esmaeili and S. Yari, Generalized quasi-cyclic codes: structural properties and code construction, Appl. Algebra Engrg. Comm. Comput. 20 (2009), no. 2, 159-173. https://doi.org/10.1007/s00200-009-0095-3
-
Y. Gao, J. Gao, T. Wu, and F. Fu, 1-generator quasi-cyclic and generalized quasi-cyclic codes over the ring
${\frac{\mathbb{Z}_4[u]}{}}$ , Appl. Algebra Engrg. Comm. Comput. 28 (2017), no. 6, 457-467. https://doi.org/10.1007/s00200-017-0315-1 - J. Gao, M. Shi, T. Wu, and F. Fu, On double cyclic codes over Z4, Finite Fields Appl. 39 (2016), 233-250. https://doi.org/10.1016/j.ffa.2016.02.003
- C. Guneri, F. Ozbudak, B. Ozkaya, E. Sacikara, Z. Sepasdar, and P. Sole, Structure and performance of generalized quasi-cyclic codes, Finite Fields Appl. 47 (2017), 183-202. https://doi.org/10.1016/j.ffa.2017.06.005
- H. Islam and O. Prakash, Construction of reversible cyclic codes over ℤpk, J. Discrete Math. Sci. Cryptography. https://doi.org/10.1080/09720529.2020.1815341
- A. S. Karbaski, T. Abualrub, and S. T. Dougherty, Double quadratic residue codes and self-dual double cyclic codes, Appl. Algebra Engrg. Comm. Comput. 33 (2022), no. 2, 91-115. https://doi.org/10.1007/s00200-020-00437-9
- J. Kaur, R. Sehmi, and S. Dutt, Reversible complement cyclic codes over Galois rings with application to DNA codes, Discrete Appl. Math. 280 (2020), 162-170. https://doi.org/10.1016/j.dam.2020.01.004
- S. Li, C. Ding, and H. Liu, A family of reversible BCH codes, preprint arXiv:1608.02169v1 [cs.IT].
- J. L. Massey, Reversible codes, Information and Control 7 (1964), 369-380. https://doi.org/10.1016/S0019-9958(64)90438-3
- H. Mostafanasab, Triple cyclic codes over ℤ2, Palest. J. Math. 6 (2017), Special Issue II, 123-134.
- S. K. Muttoo and S. Lal, A reversible code over GF(q), Kybernetika (Prague) 22 (1986), no. 1, 85-91.
- E. S. Oztas, B. Yildiz, and I. Siap, A novel approach for constructing reversible codes and applications to DNA codes over the ring 𝔽2[u]/(u2k - 1), Finite Fields Appl. 46 (2017), 217-234. https://doi.org/10.1016/j.ffa.2017.04.001
- B. Pang, S. Zhu, and Z. Sun, On LCD negacyclic codes over finite fields, J. Syst. Sci. Complex. 31 (2018), no. 4, 1065-1077. https://doi.org/10.1007/s11424-017-6301-7
- N. Patanker and S. K. Singh, Weight distribution of a subclass of ℤ2-double cyclic codes, Finite Fields Appl. 57 (2019), 287-308. https://doi.org/10.1016/j.ffa.2019.03.003
- O. Prakash, S. Patel, and S. Yadav, Reversible cyclic codes over some finite rings and their application to DNA codes, Comput. Appl. Math. 40 (2021), no. 7, Paper No. 242, 17 pp. https://doi.org/10.1007/s40314-021-01635-y
- I. Siap and N. Kulhan, The structure of generalized quasi cyclic codes, Appl. Math. E-Notes 5 (2005), 24-30.
- B. Srinivasulu and M. Bhaintwal, ℤ2-triple cyclic codes and their duals, Eur. J. Pure Appl. Math. 10 (2017), no. 2, 392-409.
- K. K. Tzeng and C. R. P. Hartmann, On the minimum distance of certain reversible cyclic codes, IEEE Trans. Inform. Theory IT-16 (1970), 644-646. https://doi.org/10.1109/tit.1970.1054517
- T. Wu, J. Gao, and F.-W. Fu, 1-generator generalized quasi-cyclic codes over ℤ4, Cryptogr. Commun. 9 (2017), no. 2, 291-299. https://doi.org/10.1007/s12095-015-0175-0
- X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math. 126 (1994), no. 1-3, 391-393. https://doi.org/10.1016/0012-365X(94)90283-6
- T. Yao, M. Shi, and P. Sole, Double cyclic codes over 𝔽q+u𝔽q+u2𝔽q, Int. J. Inf. Coding Theory 3 (2015), no. 2, 145-157. https://doi.org/10.1504/IJICOT.2015.072637
- T. Yao, S. Zhu, and B. Pang, Triple cyclic codes over 𝔽q + u𝔽q, Internat. J. Found. Comput. Sci. 32 (2021), no. 2, 115-135. https://doi.org/10.1142/S0129054121500064