Acknowledgement
The authors are deeply appreciative of the referee for the insightful comments. The first author gratefully acknowledges support from a USM research university grant 1001.PMATHS.8011101.
References
- R. M. Ali, Starlikeness associated with parabolic regions, Int. J. Math. Math. Sci. 2005 (2005), no. 4, 561-570. https://doi.org/10.1155/IJMMS.2005.561
- R. M. Ali and V. Ravichandran, Uniformly convex and uniformly starlike functions, Ramanujan Math. Newsletter 21 (2011), no. 1, 16-30.
- K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, in Inequality Theory and Applications vol. 6 (ed. Cho, Kim and Dragomir), Nova Sci. Publishers, New York, 2010, 1-7.
- N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, and Y. J. Sim, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal. 11 (2017), no. 2, 429-439. https://doi.org/10.7153/jmi-11-36
- N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, and Y. J. Sim, The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc. 41 (2018), no. 1, 523-535. https://doi.org/10.1007/s40840-017-0476-x
- K. Cudna-Salmanowicz, O. S. Kwon, A. Lecko, Y. J. Sim, and B. Smiarowska, The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α, Bol. Soc. Mat. Mex. (3) 26 (2020), no. 2, 361-375. https://doi.org/10.1007/s40590-019-00271-1
- A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92. https://doi.org/10.4064/ap-56-1-87-92
- A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), no. 2, 364-370. https://doi.org/10.1016/0022-247X(91)90006-L
- P. Hartman and A. Wintner, The spectra of Toeplitz's matrices, Amer. J. Math. 76 (1954), 867-882. https://doi.org/10.2307/2372661
- W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc. (3) 18 (1968), 77-94. https://doi.org/10.1112/plms/s3-18.1.77
- P. Jastrz,ebski, B. A. Kowalczyk, O. S. Kwon, A. Lecko, and Y. J. Sim, Hermitian Toeplitz determinants of the second and third-order for classes of close-to-star functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 166, 14 pp. https://doi.org/10.1007/s13398-020-00895-3
- B. Kowalczyk, A. Lecko, and Y. J. Sim, The sharp bound for the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc. 97 (2018), no. 3, 435-445. https://doi.org/10.1017/S0004972717001125
- D. Z. Kucerovsky, K. Mousavand, and A. Sarraf, On some properties of Toeplitz matrices, Cogent Math. 3 (2016), Art. ID 1154705, 12 pp. https://doi.org/10.1080/23311835.2016.1154705
- V. Kumar, N. E. Cho, V. Ravichandran, and H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca 69 (2019), no. 5, 1053-1064. https://doi.org/10.1515/ms-2017-0289
- V. Kumar, S. Kumar, and V. Ravichandran, Third Hankel determinant for certain classes of analytic functions, in Mathematical analysis. I. Approximation theory, 223-231, Springer Proc. Math. Stat., 306, Springer, Singapore, 2020. https://doi.org/10.1007/978-981-15-1153-0_19
- O. S. Kwon, A. Lecko, and Y. J. Sim, The bound of the Hankel determinant of the third kind for starlike functions, Bull. Malays. Math. Sci. Soc. 42 (2019), no. 2, 767-780. https://doi.org/10.1007/s40840-018-0683-0
- A. Lecko, Y. J. Sim, and B. Smiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory 13 (2019), no. 5, 2231-2238. https://doi.org/10.1007/s11785-018-0819-0
- A. Lecko, Y. J. Sim, and B. Smiarowska, ' The fourth-order Hermitian Toeplitz determinant for convex functions, Anal. Math. Phys. 10 (2020), no. 3, Paper No. 39, 11 pp. https://doi.org/10.1007/s13324-020-00382-3
- R. J. Libera and E. J. Z lotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251-257. https://doi.org/10.2307/2043698
- W. C. Ma and D. Minda, Uniformly convex functions. II, Ann. Polon. Math. 58 (1993), no. 3, 275-285. https://doi.org/10.4064/ap-58-3-275-285
- C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. 41 (1966), 111-122. https://doi.org/10.1112/jlms/s1-41.1.111
- C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108-112. https://doi.org/10.1112/S002557930000807X
- V. Ravichandran, A. Gangadharan, and T. N. Shanmugam, Sufficient conditions for starlikeness associated with parabolic region, Int. J. Math. Math. Sci. 32 (2002), no. 5, 319-324. https://doi.org/10.1155/S0161171202007895
- V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 6, 505-510. https://doi.org/10.1016/j.crma.2015.03.003
- F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196. https://doi.org/10.2307/2160026
- F. Ronning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 47 (1993), 123-134.