DOI QR코드

DOI QR Code

THE THIRD HERMITIAN-TOEPLITZ AND HANKEL DETERMINANTS FOR PARABOLIC STARLIKE FUNCTIONS

  • Rosihan M. Ali (School of Mathematical Sciences Universiti Sains Malaysia) ;
  • Sushil Kumar (Bharati Vidyapeeth's College of Engineering) ;
  • Vaithiyanathan Ravichandran (Department of Mathematics National Institute of Technology)
  • Received : 2021.05.07
  • Accepted : 2023.01.26
  • Published : 2023.03.31

Abstract

A normalized analytic function f is parabolic starlike if w(z) := zf' (z)/f(z) maps the unit disk into the parabolic region {w : Re w > |w - 1|}. Sharp estimates on the third Hermitian-Toeplitz determinant are obtained for parabolic starlike functions. In addition, upper bounds on the third Hankel determinants are also determined.

Keywords

Acknowledgement

The authors are deeply appreciative of the referee for the insightful comments. The first author gratefully acknowledges support from a USM research university grant 1001.PMATHS.8011101.

References

  1. R. M. Ali, Starlikeness associated with parabolic regions, Int. J. Math. Math. Sci. 2005 (2005), no. 4, 561-570. https://doi.org/10.1155/IJMMS.2005.561
  2. R. M. Ali and V. Ravichandran, Uniformly convex and uniformly starlike functions, Ramanujan Math. Newsletter 21 (2011), no. 1, 16-30.
  3. K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, in Inequality Theory and Applications vol. 6 (ed. Cho, Kim and Dragomir), Nova Sci. Publishers, New York, 2010, 1-7.
  4. N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, and Y. J. Sim, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal. 11 (2017), no. 2, 429-439. https://doi.org/10.7153/jmi-11-36
  5. N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, and Y. J. Sim, The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc. 41 (2018), no. 1, 523-535. https://doi.org/10.1007/s40840-017-0476-x
  6. K. Cudna-Salmanowicz, O. S. Kwon, A. Lecko, Y. J. Sim, and B. Smiarowska, The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α, Bol. Soc. Mat. Mex. (3) 26 (2020), no. 2, 361-375. https://doi.org/10.1007/s40590-019-00271-1
  7. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92. https://doi.org/10.4064/ap-56-1-87-92
  8. A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), no. 2, 364-370. https://doi.org/10.1016/0022-247X(91)90006-L
  9. P. Hartman and A. Wintner, The spectra of Toeplitz's matrices, Amer. J. Math. 76 (1954), 867-882. https://doi.org/10.2307/2372661
  10. W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc. (3) 18 (1968), 77-94. https://doi.org/10.1112/plms/s3-18.1.77
  11. P. Jastrz,ebski, B. A. Kowalczyk, O. S. Kwon, A. Lecko, and Y. J. Sim, Hermitian Toeplitz determinants of the second and third-order for classes of close-to-star functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 166, 14 pp. https://doi.org/10.1007/s13398-020-00895-3
  12. B. Kowalczyk, A. Lecko, and Y. J. Sim, The sharp bound for the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc. 97 (2018), no. 3, 435-445. https://doi.org/10.1017/S0004972717001125
  13. D. Z. Kucerovsky, K. Mousavand, and A. Sarraf, On some properties of Toeplitz matrices, Cogent Math. 3 (2016), Art. ID 1154705, 12 pp. https://doi.org/10.1080/23311835.2016.1154705
  14. V. Kumar, N. E. Cho, V. Ravichandran, and H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca 69 (2019), no. 5, 1053-1064. https://doi.org/10.1515/ms-2017-0289
  15. V. Kumar, S. Kumar, and V. Ravichandran, Third Hankel determinant for certain classes of analytic functions, in Mathematical analysis. I. Approximation theory, 223-231, Springer Proc. Math. Stat., 306, Springer, Singapore, 2020. https://doi.org/10.1007/978-981-15-1153-0_19
  16. O. S. Kwon, A. Lecko, and Y. J. Sim, The bound of the Hankel determinant of the third kind for starlike functions, Bull. Malays. Math. Sci. Soc. 42 (2019), no. 2, 767-780. https://doi.org/10.1007/s40840-018-0683-0
  17. A. Lecko, Y. J. Sim, and B. Smiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory 13 (2019), no. 5, 2231-2238. https://doi.org/10.1007/s11785-018-0819-0
  18. A. Lecko, Y. J. Sim, and B. Smiarowska, ' The fourth-order Hermitian Toeplitz determinant for convex functions, Anal. Math. Phys. 10 (2020), no. 3, Paper No. 39, 11 pp. https://doi.org/10.1007/s13324-020-00382-3
  19. R. J. Libera and E. J. Z lotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251-257. https://doi.org/10.2307/2043698
  20. W. C. Ma and D. Minda, Uniformly convex functions. II, Ann. Polon. Math. 58 (1993), no. 3, 275-285. https://doi.org/10.4064/ap-58-3-275-285
  21. C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. 41 (1966), 111-122. https://doi.org/10.1112/jlms/s1-41.1.111
  22. C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108-112. https://doi.org/10.1112/S002557930000807X
  23. V. Ravichandran, A. Gangadharan, and T. N. Shanmugam, Sufficient conditions for starlikeness associated with parabolic region, Int. J. Math. Math. Sci. 32 (2002), no. 5, 319-324. https://doi.org/10.1155/S0161171202007895
  24. V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 6, 505-510. https://doi.org/10.1016/j.crma.2015.03.003
  25. F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196. https://doi.org/10.2307/2160026
  26. F. Ronning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 47 (1993), 123-134.