DOI QR코드

DOI QR Code

Stability of Foaming Agent and Characteristics of Light-weight Foamed Concrete based on Blast Furnace Slag using CBS-dust

기포제의 안정성 및 CBS-dust를 활용한 고로슬래그 기반 경량 기포콘크리트의 특성

  • Kim, Jong-Kwon (Dept. of Architectural Engineering, Cheong-ju University) ;
  • Han, Jun-Hui (Dept. of Architectural Engineering, Cheong-ju University) ;
  • Oh, Yang-Ki (Dept. of Architectural Engineering, Mokpo National University) ;
  • Han, Min-Cheol (Dept. of Architectural Engineering, Cheong-ju University)
  • 김종권 (청주대학교 건축공학과) ;
  • 한준희 (청주대학교 건축공학과) ;
  • 오양기 (목포대학교 건축학과) ;
  • 한민철 (청주대학교 건축공학과)
  • Received : 2023.01.05
  • Accepted : 2023.02.14
  • Published : 2023.03.30

Abstract

The objective of this study is to investigate the effect of foaming agents and the incorporation of CBS-dust as a binder of light-weight foam concrete with 0.5 t/m3 of density on the performances of light-weight foam concrete using image analysis by the foam analyzer. Four different types of foaming agent are adpoted including Cationic foaming agent(CF), Anionic foaming agent(AF), Fe-protein foaming agent(FF) and Synthetic foaming agent(SF). To invesitgate the foaming capability and stability, foam analyzer is used. For binder compositions of lightweight foam concrete, Chlorine bypass system-dust(CBS-dust), which is collected at the cement production process, and granulated blast furnace slag(GBFS) are incorporated with Ordinary Portland cement ranged from 15% to 65%, respectively to facilitate settlement of light-weight foamed concrete. Test results indicated that the combinations of the AF with 0.2% and 5% of CBS-dust as blast furnace slag-based binders contribute to improve the resistance to settlement, strength enhancement of light-weight foamed concrete.

Keywords

Acknowledgement

이 연구는 한국연구재단의 정부지원(과학기술정보통신부)으로 진행되었습니다. 과제번호 : NRF-2020R1A2C1015162

References

  1. Kim HT. (2007). An experimental study on the flowing and strength properties of high perfermance concrete using blast furnace slag. [master's thesis].[Daejeon]: Hanbat National University, 64.
  2. Byun, K. J., Song, H. W., & Park, S. S. (1997). Development of Lightweight Foamed Concrete Using Polymer Foam Agent(I). Journal of the Korea Concrete Institute, 09(1), 165-172
  3. Gonzenbach, U. T., Studart, A. R., Tervoort, E., & Gauckler, L. J. (2006). Ultrastable particle-stabilized foams. Angewandte Chemie International Edition, 45(21), 3526-3530. https://doi.org/10.1002/anie.200503676
  4. Han, C, G,. Han,M. C., Choi S. Y., & Jeong, G., B. (2008). Effect of Incorporation of Fine Particle Grain and Superplasticizer on Engineering Properties of the Lightweight Foamed Concrete. Journal of the Architectural Institute of Korea Structure & Construction, 24(10), 93-100.
  5. Han, M. C., & Lee, D. J. (2019). Physical and Chemical Properties of Chlorine Bypass System-Dust from Cement Manufacturing. Journal of the Korean Recycled Construction Resources Institute, 7(4), 310-315. https://doi.org/10.14190/JRCR.2019.7.4.310
  6. Han, M. C., & Lee, D. J. (2020). Engineering Characteristics of Blast Furnace Slag Cement Mortar Using Chlorine Bypass System-Dust as Alkali Activator. Journal of the Korean Recycled Construction Resources Institute, 8(2), 235-344. https://doi.org/10.14190/JRCR.2020.8.2.235
  7. Horozov, T. S. (2008). Foams and foam films stabilised by solid particles. Current Opinion in Colloid & Interface Science, 13(3), 134-140. https://doi.org/10.1016/j.cocis.2007.11.009
  8. Kang, B. H. (2002). Properties of High-heated Concrete. Magazine Journal of the Korea Concrete Institute, 14(2), 17-23.
  9. Kim, H. S., Lee, S. H., Sun, J.S., & Kim, J. M. (2016). A Physical Properties of Lightweight Foamed Concrete According to Lightweight Aggregate Types and Foaming agent Types. Journal of the Korea Concrete Institute, 28(4), 435-444. https://doi.org/10.4334/JKCI.2016.28.4.435
  10. Kim, J. M., Choi, H. G., & Park, S. G. (2009). An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type. Journal of the Korea Institute of Building Construction, 9(4), 63-73. https://doi.org/10.5345/JKIC.2009.9.4.063
  11. Lee, J. I. & Lim, N. G. (2007). A Fundamental Study on the Development of Fire Resistance Filling of Friendly Environment Using Aerated Concrete. Journal of the Korea Institute of Ecological Architecture and Environment, 7(4), 119-126.
  12. Simjoo, M., Rezaei, T., Andrianov, A., & Zitha P.L.J. (2013). Foam stability in the presence of oil: Effect of foaming agent concentration and oil type. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 438, 148-158. https://doi.org/10.1016/j.colsurfa.2013.05.062
  13. Sin, S.C. (2012). "Properties of Light Weight Foamed Concrete according to Types of Foam Agent." Master's Thesis, Kongju National University, 99.
  14. Stevenson, P. (2012). Foam engineering: fundamentals and applications. John Wiley & Sons.
  15. Wang, H., & Chen, J. (2013). A study on the permeability and flow behavior of foaming agent foam in unconsolidated media. Journal of Environmental earth sciences, 68(2), 567-576. https://doi.org/10.1007/s12665-012-1760-6
  16. Xu, Q., Nakajima, M., Ichikawa, S., Nakamura, N., Roy, P., Okadome, H., & Shiina, T. (2009). Effects of foaming agent and electrolyte concentrations on bubble formation and stabilization. Journal of Colloid and Interface Science, 332(1), 208-214. https://doi.org/10.1016/j.jcis.2008.12.044
  17. Yekeen, N., Manan, M.A., Idris, A.K., & Samin, A.M. (2017). Influence of foaming agent and electrolyte concentrations on foaming agent Adsorption and foaming characteristics. Journal of Petroleum Science and Engineering, 149, 612-622.  https://doi.org/10.1016/j.petrol.2016.11.018