DOI QR코드

DOI QR Code

Application of nanocomposite material to avoid injury by physical sports equipment

  • Weifeng Qin (Physical Education Department, Anhui University of Finance and Economics) ;
  • Zhubo Xu (Physical Education Department, Anhui University of Finance and Economics)
  • 투고 : 2022.04.06
  • 심사 : 2022.08.31
  • 발행 : 2023.02.25

초록

Safety in sports is important because if an athlete has an accident, he may not be able to lead an everyday life for the rest of his life. The safety of sports facilities is very effective in creating people's sports activities, with the benefits of staying away from physical injury, enjoying sports, and mental peace. Everyone has the right to participate in sports and recreation and to ensure that they want a safe environment. This study prepares a very good Nickel-Cobalt -Silicon carbide (Ni/Co-SiC) nanocomposite with convenient geometry on the leg press machine rod, employing the pulse electrodeposition technique to reduce the rod's wear and increase the durability of sports equipment and control sports damages. The results showed that the Ni/Co-SiC nanocomposite formed at 2 A/dm2 shows extraordinary microhardness. The wear speed for the Ni/Co-SiC nanocomposite created at 4 A/dm2 was 15 mg/min, showing superior wear resistance. Therefore, the Ni/Co-SiC nanocomposite can reduce sports equipment's wear and decrease sports injuries. Ni-Co/SiC nanocomposite layers with various scopes of silicon carbide nanoparticles via electrodeposition in a Ni-Co plating bath, including SiC nanoparticles to be co-deposited. The form and dimensions of Silicon carbide nanoparticles are watched and selected using Scanning Electron Microscopy (SEM).

키워드

과제정보

Key Project of Humanities and Social Sciences of Education Department of Anhui Province: Research on Dynamic Impact of Diversified Management on Business Performance of Listed Sports Companies (SK2019A0486).

참고문헌

  1. Ababsa, A., Temam, H.B., Hasan, G.G., Althamthami, M. and Malfi, N. (2022), "Effect of sodium dodecyl sulfate and different SiC quantities on electrodeposited Ni-Co alloy coatings", Surface Topograph., 10(1), 015038. https://doi.org/10.1088/2051-672X/ac59d2.
  2. Bai, B., Nie, Q., Zhang, Y., Wang, X. and Hu, W. (2021), "Cotransport of heavy metals and SiO2 particles at different temperatures by seepage", J. Hydrol., 597, 125771. https://doi.org/10.1016/j.jhydrol.2020.125771.
  3. Bai, H. and Li, Q. (2022), "Electrodeposited Ni/TiN-SiC nanocomposites on the dumbbell: Reducing sport injuries", Coatings, 12(2), 177. https://doi.org/10.3390/coatings12020177.
  4. Bakhit, B. and Akbari, A. (2013), "Synthesis and characterization of Ni-Co/SiC nanocomposite coatings using sediment co-deposition technique", J. Alloys Compd., 560, 92-104. https://doi.org/10.1016/j.jallcom.2013.01.122.
  5. Balazsi, C., Konya, Z., Weber, F., Biro, L.P. and Arato, P. (2003), "Preparation and characterization of carbon nanotube reinforced silicon nitride composites", Mater. Sci. Eng. C, 23(6-8), 1133-1137. https://doi.org/10.1016/j.msec.2003.09.085.
  6. Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., Li, M.J. and Zou, Q. (2022), "webTWAS: A resource for disease candidate susceptibility genes identified by transcriptome-wide association study", Nucleic Acids Res., 50(D1), D1123-D1130. https://doi.org/10.1093/nar/gkab957.
  7. Chen, G., Xu, W. and Zhu, D. (2017), "Recent advances in organic polymer thermoelectric composites", J. Mater. Chem. C, 5(18), 4350-4360. https://doi.org/10.1039/C6TC05488A.
  8. Cheng, F., Liang, H., Wang, H., Zong, G. and Xu, N. (2022), "Adaptive neural self-triggered bipartite fault-tolerant control for nonlinear MASs with dead-zone constraints", IEEE T Automat. Sci. Eng., 1-12. https://doi.org/10.1109/TASE.2022.3184022.
  9. Cho, J., Boccaccini, A.R. and Shaffer, M.S.P. (2009), "Ceramic matrix composites containing carbon nanotubes", J. Mater. Sci., 44(8), 1934-1951. https://doi.org/10.1007/s10853-009-3262-9.
  10. de Vries, M.O., Sato, S.i., Ohshima, T., Gibson, B.C., Bluet, J.M., Castelletto, S., Johnson, B.C. and Reineck, P. (2021), "Fluorescent silicon carbide nanoparticles", Adv. Opt. Mater., 9(20), 2100311. https://doi.org/10.1002/adom.202100311.
  11. Elliott, J., Heron, N., Versteegh, T., Gilchrist, I.A., Webb, M., Archbold, P., Hart, N.D. and Peek, K. (2021), "Injury reduction programs for reducing the incidence of sport-related head and neck injuries including concussion: A systematic review", Sports Med., 51(11), 2373-2388. https://doi.org/10.1007/s40279-021-01501-1.
  12. Erler, F., Jakob, C., Romanus, H., Spiess, L., Wielage, B., Lampke, T. and Steinhauser, S. (2003), "Interface behaviour in nickel composite coatings with nano-particles of oxidic ceramic", Electrochimica Acta, 48(20-22), 3063-3070. https://doi.org/10.1016/S0013-4686(03)00380-3.
  13. Fang, Q., Liu, X., Zeng, K., Zhang, X., Zhou, M. and Du, J. (2022), "Centrifuge modelling of tunnelling below existing twin tunnels with different types of support", Undergr. Space, 7(6), 1125-1138. https://doi.org/10.1016/j.undsp.2022.02.007.
  14. Fischer, H. (2003), "Polymer nanocomposites: from fundamental research to specific applications", Mater. Sci. Eng. C, 23(6-8), 763-772. https://doi.org/10.1016/j.msec.2003.09.148.
  15. Guan, H., Huang, S., Ding, J., Tian, F., Xu, Q. and Zhao, J. (2020), "Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys", Acta Mater., 187, 122-134. https://doi.org/10.1016/j.actamat.2020.01.044.
  16. Guo, C., Zhang, Z., Wu, Y., Wang, Y., Ma, G., Shi, J., Zhong, Z., Hong, Z., Jin, Z. and Zhao, Y. (2022), "Synergic realization of electrical insulation and mechanical strength in liquid nitrogen for high-temperature superconducting tapes with ultra-thin acrylic resin coating", Supercond. Sci. Technol., 35(7), 075014. https://doi.org/10.1088/1361-6668/ac6e0d.
  17. Han, M.C., Cai, S.Z., Wang, J. and He, H.W. (2022), "Single-side superhydrophobicity in Si3N4-Doped and SiO2-Treated polypropylene nonwoven webs with antibacterial activity", Polymers, 14(14). https://doi.org/10.3390/polym14142952.
  18. Hao, R.B., Lu, Z.Q., Ding, H. and Chen, L.Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: Analysis and experiment", Nonlinear Dyn., 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
  19. Hernadi, K., Ljubovic, E., Seo, J.W. and Forro, L. (2003), "Synthesis of MWNT-based composite materials with inorganic coating", Acta Materialia, 51(5), 1447-1452. https://doi.org/10.1016/S1359-6454(02)00539-6.
  20. Kamel, M.M., Mohsen, Q., Hamid, Z.A., Rashwan, S.M., Ibrahim, I.S. and El-Sheikh, S.M. (2021), "Electrodeposition of Ni-Co/Nano SiC Composites from a Citrate Bath and their Characterization", Int. J. Electrochem. Sci., 16(5). https://doi.org/10.20964/2021.05.47.
  21. Lee, D.B., Ko, J.H. and Kwon, S.C. (2004), "High temperature oxidation of Ni-W coatings electroplated on steel", Mater. Sci. Eng. A., 380(1-2), 73-78. https://doi.org/10.1016/j.msea.2004.03.036.
  22. Lee, W.E. (1994), WM Rainforth, in Ceramic Microstructures: Property control by processing, Chapman&Hall, London, U.K. 
  23. Li, G., Yuan, H., Mou, J., Dai, E., Zhang, H., Li, Z., Zhao, Y., Dai, Y. and Zhang, X. (2022a), "Electrochemical detection of nitrate with carbon nanofibers and copper co-modified carbon fiber electrodes", Compos. Commun., 29, 101043. https://doi.org/10.1016/j.coco.2021.101043.
  24. Li, J., Duan, Q., Xia, G., Wan, Z., Yin, G., Xie, J. and Xie, Q. (2022b), "Enhancing surface insulation of glass fiber reinforced polymer composites by plasma fluorinating glass fiber", Polym. Compos., 43(8), 5715-5725. https://doi.org/10.1002/pc.26890.
  25. Li, P., Yang, M. and Wu, Q. (2021), "Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk", IEEE T Sust. Energy, 12(1), 58-69. https://doi.org/10.1109/TSTE.2020.2978634.
  26. Liang, L., Xu, M., Chen, Y., Zhang, T., Tong, W., Liu, H., Wang, H. and Li, H. (2021), "Effect of welding thermal treatment on the microstructure and mechanical properties of nickel-based superalloy fabricated by selective laser melting", Mater. Sci. Eng. A, 819, 141507. https://doi.org/10.1016/j.msea.2021.141507.
  27. Liu, S., Niu, B., Zong, G., Zhao, X. and Xu, N. (2022), "Adaptive fixed-time hierarchical sliding mode control for switched under-actuated systems with dead-zone constraints via event-triggered strategy", Appl. Math. Comput., 435, 127441. https://doi.org/10.1016/j.amc.2022.127441.
  28. Malaki, M., Xu, W., Kasar, A.K., Menezes, P.L., Dieringa, H., Varma, R.S. and Gupta, M. (2019), "Advanced metal matrix nanocomposites", Metals, 9(3), 330. https://doi.org/10.3390/met9030330.
  29. Martin, T.G., Wallace, J., Suh, Y.I., Harriell, K. and Tatman, J. (2018), "Sport-related-concussions pilot study: Athletic training students' media use and perceptions of media coverage", Int. J. Sport Commun., 11(1), 75-94. https://doi.org/10.1123/ijsc.2017-0086.
  30. Safavi, M.S., Tanhaei, M., Ahmadipour, M.F., Adli, R.G., Mahdavi, S. and Walsh, F.C. (2020), "Electrodeposited Ni-Co alloy-particle composite coatings: A comprehensive review", Surf. Coatings Technol., 382, 125153. https://doi.org/10.1016/j.surfcoat.2019.125153.
  31. Shi, L., Sun, C., Gao, P., Zhou, F. and Liu, W. (2006), "Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating", Appl. Surf. Sci., 252(10), 3591-3599. https://doi.org/10.1016/j.apsusc.2005.05.035.
  32. Si, Z., Yang, M., Yu, Y. and Ding, T. (2021), "Photovoltaic power forecast based on satellite images considering effects of solar position", Appl. Energy, 302, 117514. https://doi.org/10.1016/j.apenergy.2021.117514.
  33. Sun, D., Huo, J., Chen, H., Dong, Z. and Ren, R. (2022), "Experimental study of fretting fatigue in dovetail assembly considering temperature effect based on damage mechanics method", Eng. Fail. Anal., 131, 105812. https://doi.org/10.1016/j.engfailanal.2021.105812.
  34. Tan, J., Liu, L., Li, F., Chen, Z., Chen, G.Y., Fang, F., Guo, J., He, M. and Zhou, X. (2022), "Screening of endocrine disrupting potential of surface waters via an affinity-based biosensor in a rural community in the Yellow River Basin, China", Environ. Sci. Technol., 56(20), 14350-14360. https://doi.org/10.1021/acs.est.2c01323.
  35. Tang, Y., Liu, S., Deng, Y., Zhang, Y., Yin, L. and Zheng, W. (2021), "An improved method for soft tissue modeling", Biomed. Signal Pr. Control, 65, 102367. https://doi.org/10.1016/j.bspc.2020.102367.
  36. Tkalya, E.E., Ghislandi, M., de With, G. and Koning, C.E. (2012), "The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites", Curr. Opin. Colloid Interf. Sci., 17(4), 225-232. https://doi.org/10.1016/j.cocis.2012.03.001.
  37. Vollath, D. and Szabo, D.V. (1999), "Coated nanoparticles: A new way to improved nanocomposites", J. Nanopart. Res., 1(2), 235-242. https://doi.org/10.1023/A:1010060701507.
  38. Wang, M., Yang, M., Fang, Z., Wang, M. and Wu, Q. (2022), "A practical feeder planning model for urban distribution system", IEEE T Power Syst., 1-1. https://doi.org/10.1109/TPWRS.2022.3170933.
  39. Wang, Z., Dai, L., Yao, J., Guo, T., Hrynsphan, D., Tatsiana, S. and Chen, J. (2021), "Improvement of Alcaligenes sp.TB performance by Fe-Pd/multi-walled carbon nanotubes: Enriched denitrification pathways and accelerated electron transport", Bioresource Technol., 327, 124785. https://doi.org/10.1016/j.biortech.2021.124785.
  40. Wu, Y., Zhao, Y., Han, X., Jiang, G., Shi, J., Liu, P., Khan, M.Z., Huhtinen, H., Zhu, J., Jin, Z. and Yamada, Y. (2021), "Ultra-fast growth of cuprate superconducting films: Dual-phase liquid assisted epitaxy and strong flux pinning", Mater. Today Phys., 18, 100400. https://doi.org/10.1016/j.mtphys.2021.100400.
  41. Xia, F., Li, C., Ma, C., Li, Q. and Xing, H. (2021), "Effect of pulse current density on microstructure and wear property of Ni-TiN nanocoatings deposited via pulse electrodeposition", Appl. Surf. Sci., 538, 148139. https://doi.org/10.1016/j.apsusc.2020.148139.
  42. Xia, F., Li, Q., Ma, C., Liu, W. and Ma, Z. (2020), "Preparation and wear properties of Ni/TiN-SiC nanocoatings obtained by pulse current electrodeposition", Ceram. Int., 46(6), 7961-7969. https://doi.org/10.1016/j.ceramint.2019.12.017.
  43. Xie, J., Zhang, J., Zhang, Z., Yang, Q., Guan, K., He, Y., Wang, R., Zhang, H., Qiu, X. and Wu, R. (2022), "New insights on the different corrosion mechanisms of Mg alloys with solute-enriched stacking faults or long period stacking ordered phase", Corrosion Sci., 198, 110163. https://doi.org/10.1016/j.corsci.2022.110163.
  44. Xu, H., He, T., Zhong, N., Zhao, B. and Liu, Z. (2022), "Transient thermomechanical analysis of micro cylindrical asperity sliding contact of SnSbCu alloy", Tribol. Int., 167, 107362. https://doi.org/10.1016/j.triboint.2021.107362.
  45. Xuewu, L., Hongxing, W., Tian, S., Chuanwei, Z., Xiaona, J., Xuegang, Z. and Chen, L. (2022), "Efficient preparation and anticorrosion mechanism of superhydrophobic 7075 aviation aluminum alloy", Rare Metal Mater. Eng., 51(1), 6-10.
  46. Ye, H., Liu, X.Y. and Hong, H. (2008), "Fabrication of metal matrix composites by metal injection molding-A review", J. Mater., Proc. Technol., 200(1-3), 12-24. https://doi.org/10.1016/j.jmatprotec.2007.10.066.
  47. Zhang, H., Zou, Q., Ju, Y., Song, C. and Chen, D. (2022a), "Distance-based support vector machine to predict DNA N6- methyladenine modification", Curr. Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517.
  48. Zhang, Z., Yang, F., Zhang, H., Zhang, T., Wang, H., Xu, Y. and Ma, Q. (2021), "Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating", Mater. Character., 171, 110732. https://doi.org/10.1016/j.matchar.2020.110732.
  49. Zhang, Z., Yang, Q., Yu, Z., Wang, H. and Zhang, T. (2022b), "Influence of Y2O3 addition on the microstructure of TiC reinforced Ti-based composite coating prepared by laser cladding", Mater. Character., 189, 111962. https://doi.org/10.1016/j.matchar.2022.111962.
  50. Zhao, Y., Wang, H., Xu, N., Zong, G. and Zhao, X. (2023), "Reinforcement learning-based decentralized fault tolerant control for constrained interconnected nonlinear systems", Chaos Soliton. Fract., 167, 113034. https://doi.org/10.1016/j.chaos.2022.113034.
  51. Zhou, J., Bai, J. and Liu, Y. (2022a), "Fabrication and modeling of matching system for air-coupled transducer", Micromachines, 13(5). https://doi.org/10.3390/mi13050781.
  52. Zhou, L., Li, X., He, D., Guo, W., Huang, Y., He, G., Xing, Z. and Wang, H. (2022b), "Study on properties of potassium sodium niobate coating prepared by high efficiency supersonic plasma spraying", Actuators, 11(2). https://doi.org/10.3390/act11020028.
  53. Zhu, H. and Zhao, R. (2022), "Isolated Ni atoms induced edge stabilities and equilibrium shapes of CVD-prepared hexagonal boron nitride on Ni(111) surface", New J. Chem., 46(36), 17496-17504. https://doi.org/10.1039/D2NJ03735A.