DOI QR코드

DOI QR Code

Application of adaptive neuro-fuzzy system in prediction of nanoscale and grain size effects on formability

  • Nan Yang (School of Architecture and Civil Engineering, Qiqihar University) ;
  • Meldi Suhatril (Department of Civil Engineering, Faculty of Engineering, Universiti Malaya) ;
  • Khidhair Jasim Mohammed (Air conditioning and Refrigeration Techniques Engineering Department, Al-Mustaqbal University College) ;
  • H. Elhosiny Ali (Department of Physics, Faculty of Science, King Khalid University)
  • 투고 : 2022.02.13
  • 심사 : 2022.08.29
  • 발행 : 2023.02.25

초록

Grain size in sheet metals in one of the main parameters in determining formability. Grain size control in industry requires delicate process control and equipment. In the present study, effects of grain size on the formability of steel sheets is investigated. Experimental investigation of effect of grain size is a cumbersome method which due to existence of many other effective parameters are not conclusive in some cases. On the other hand, since the average grain size of a crystalline material is a statistical parameter, using traditional methods are not sufficient for find the optimum grain size to maximize formability. Therefore, design of experiment (DoE) and artificial intelligence (AI) methods are coupled together in this study to find the optimum conditions for formability in terms of grain size and to predict forming limits of sheet metals under bi-stretch loading conditions. In this regard, a set of experiment is conducted to provide initial data for training and testing DoE and AI. Afterwards, the using response surface method (RSM) optimum grain size is calculated. Moreover, trained neural network is used to predict formability in the calculated optimum condition and the results compared to the experimental results. The findings of the present study show that DoE and AI could be a great aid in the design, determination and prediction of optimum grain size for maximizing sheet formability.

키워드

과제정보

This research was funded by Scientific Research Project of Qiqihar University (145209130).

참고문헌

  1. Abdolvand, H., Wright, J. and Wilkinson, A.J. (2018), "Strong grain neighbour effects in polycrystals", Nature Commun., 9(1), 171. https://doi.org/10.1038/s41467-017-02213-9
  2. Adamian, A., Safari, K.H., Sheikholeslami, M., Habibi, M., AlFurjan, M. and Chen, G. (2020), "Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251
  3. Akroum, H., Akroum-Amrouche, D. and Aibeche, A. (2020), "Modeling methods used in bioenergy production processes: A review", Adv. Comput. Des., 5(3), 323-347. https://doi.org/10.12989/acd.2020.5.3.323
  4. Al-Furjan, M., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2020a), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 112990. https://doi.org/10.1016/j.compstruct.2020.112990
  5. Al-Furjan, M., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J. and Safarpour, M. (2020b), "Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01177-7
  6. Al-Furjan, M., Fereidouni, M., Sedghiyan, D., Habibi, M. and won Jung, D. (2020c), "Three-dimensional frequency response of the CNT-Carbon-Fiber reinforced laminated circular/annular plates under initially stresses", Compos. Struct., 113146. https://doi.org/10.1016/j.compstruct.2020.113146
  7. Al-Furjan, M., Habibi, M., won Jung, D. and Safarpour, H. (2020d), "Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory", Compos. Struct., 113152. https://doi.org/10.1016/j.compstruct.2020.113152
  8. Al-Furjan, M., Moghadam, S.A., Dehini, R., Shan, L., Habibi, M. and Safarpour, H. (2020e), "Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Semi-numerical and finite element modeling", Thin Wall. Struct., 107242. https://doi.org/10.1016/j.tws.2020.107242
  9. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020f), "Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis", Thin Wall. Struct., 157, 107111. https://doi.org/10.1016/j.tws.2020.107111
  10. Alipour, M., Torabi, M.A., Sareban, M., Lashini, H., Sadeghi, E., Fazaeli, A., Habibi, M. and Hashemi, R. (2020), "Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels", Mech. Based Des. Struct., 48(5), 525-541. https://doi.org/10.1080/15397734.2019.1633343
  11. Amelirad, O. and Assempour, A. (2019), "Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets", J. Manuf. Pr., 47, 310-323. https://doi.org/10.1016/j.jmapro.2019.09.035
  12. Amelirad, O. and Assempour, A. (2021), "Coupled continuum damage mechanics and crystal plasticity model and its application in damage evolution in polycrystalline aggregates", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01346-2
  13. Arora, M., Dhawan, S. and Singh, K. (2021), "Improved performance of machine learning algorithms for prognosis of cervical cancer", Adv. Comput. Des., 6(3), 191-205. https://doi.org/10.12989/ACD.2021.6.3.191
  14. Azghandi, S.H.M., Weiss, M. and Barnett, M.R. (2020), "The effect of grain size on the bend forming limits in AZ31 Mg Alloy", JOM, 72(7), 2586-2596. https://doi.org/10.1007/s11837-020-04073-z
  15. Babaei, M., Atasoy, A., Hajirasouliha, I., Mollaei, S. and Jalilkhani, M. (2022), "Numerical solution of beam equation using neural networks and evolutionary optimization tools", Adv. Comput. Des., 7(1), 1-17. https://doi.org/10.12989/ACD.2022.7.1.001
  16. Bai, Y., Alzahrani, B., Baharom, S. and Habibi, M. (2020), "Seminumerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-020-01191-9
  17. Ban, Y., Liu, M., Wu, P., Yang, B., Liu, S., Yin, L. and Zheng, W. (2022), "Depth estimation method for monocular camera defocus images in microscopic scenes", Electronics, 11(13). https://doi.org/10.3390/electronics11132012
  18. Bouafia, H., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Hussain, M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239-249. https://doi.org/10.12989/anr.2021.11.3.175
  19. Boughaba, A. and Bouabaz, M. (2020), "Identification and risk management related to construction projects", Adv. Comput. Des., 5(4), 445-465. https://doi.org/10.12989/acd.2020.5.4.445
  20. Casanola-Martin, G.M. and Pham-The, H. (2019), "Machine learning applications in nanomedicine and nanotoxicology: An overview", Int. J. Appl. Nanotech. Res., 4(1), 1-7. https://doi.org/10.4018/IJANR.2019010101
  21. Casari, F., Tassan, M., Messina, A. and Molinari, A. (2006), "Effect of punch diameter, grid dimension, and lubrication on forming limit diagram", J. Test. Evaluat., 34(1), 24-30. https://doi.org/10.1520/JTE12669
  22. Chen, F., Chen, J., Duan, R., Habibi, M. and Khadimallah, M.A. (2022), "Investigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any yawed angle", Compos. Struct., 115195. https://doi.org/10.1016/j.compstruct.2022.115195
  23. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.w., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2020.1744005
  24. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021a), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175. https://doi.org/10.12989/anr.2021.10.2.175
  25. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021b), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175-189. https://doi.org/10.12989/anr.2021.10.2.175
  26. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021c), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 113599. https://doi.org/10.1016/j.compstruct.2021.113599
  27. Derogar, A. and Djavanroodi, F. (2011), "Artificial neural network modeling of forming limit diagram", Mater. Manuf. Pr., 26(11), 1415-1422. https://doi.org/10.1080/10426914.2010.544818
  28. Dilmec, M., Halkaci, H.S., Ozturk, F., Livatyali, H. and Yigit, O. (2013), "Effects of sheet thickness and anisotropy on forming limit curves of AA2024-T4", Int. J. Adv. Manuf. Technol., 67(9-12), 2689-2700. https://doi.org/10.1007/s00170-012-4684-0
  29. Ebrahimi, F., Habibi, M. and Safarpour, H. (2019a), "On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell", Eng. Comput., 35(4), 1375-1389. https://doi.org/10.1007/s00366-018-0669-4
  30. Ebrahimi, F., Hajilak, Z.E., Habibi, M. and Safarpour, H. (2019b), "Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 233(13), 4590-4605. https://doi.org/10.1177/0954406219832323
  31. Ebrahimi, F., Hashemabadi, D., Habibi, M. and Safarpour, H. (2020a), "Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell", Microsyst. Technol., 26(2), 461-473. https://doi.org/10.1007/s00542-019-04542-9
  32. Ebrahimi, F., Mohammadi, K., Barouti, M.M. and Habibi, M. (2019c), "Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell", Wave Random Complex Med., 1-27. https://doi.org/10.1080/17455030.2019.1694729
  33. Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020b), "Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer", Eur. Phys. J. Plus, 135(2), 144. https://doi.org/10.1140/epjp/s13360-020-00217-x
  34. Elangovan, K., Sathiya Narayanan, C. and Narayanasamy, R. (2010), "Modelling of forming limit diagram of perforated commercial pure aluminium sheets using artificial neural network", Comput. Mater. Sci., 47(4), 1072-1078. https://doi.org/10.1016/j.commatsci.2009.12.016
  35. Esmailpoor Hajilak, Z., Pourghader, J., Hashemabadi, D., Sharifi Bagh, F., Habibi, M. and Safarpour, H. (2019), "Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory", Mech. Based Des. Struct., 47(5), 521-545. https://doi/10.1080/15397734.2019.1566743
  36. Fan, L., Huang, Y., Ji, D., Moradi, Z., Safa, M. and Amine Khadimallah, M. (2022), "Interaction of angular velocity and temperature rise in the thermo-inertia bifurcation buckling of FG laminated nanocomposite annular plates", Eng. Struct., 265, 114518. https://doi.org/10.1016/j.engstruct.2022.114518
  37. Fazaeli, A., Habibi, M. and Ekrami, A.a. (2016), "Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite - pearlite steel with the same chemical composition", Metall. Eng., 19(2), 84-93. https://doi.org/10.22076/me.2017.41458.1064
  38. Feather, W.G., Lim, H. and Knezevic, M. (2020), "A numerical study into element type and mesh resolution for crystal plasticity finite element modeling of explicit grain structures", Comput. Mech., 1-23. https://doi.org/10.1007/s00466-020-01918-x
  39. Fisher, R.A. (1936), "Design of experiments", British Med. J., 1(3923), 554.
  40. Ghazanfari, A., Soleimani, S.S., Keshavarzzadeh, M., Habibi, M., Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Based Des. Struct., 48(6), 755-772. https://doi.org/10.1080/15397734.2019.1662310
  41. Gong, X., Wang, L., Mou, Y., Wang, H., Wei, X., Zheng, W. and Yin, L. (2022), "Improved Four-channel PBTDPA control strategy using force feedback bilateral teleoperation system", Int. J. Control Automat. Syst., 20(3), 1002-1017. https://doi.org/10.1007/s12555-021-0096-y
  42. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021a), "An intelligent computer method for vibration responses of the spinning multilayer symmetric nanosystem using multi-physics modeling", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01433-4
  43. Guo, Y., Mi, H. and Habibi, M. (2021b), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Pr., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723
  44. Habibi, M., Darabi, R., Sa, J.C.d. and Reis, A. (2021), "An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 235(8), 1937-1951. https://doi.org/10.1177/14644207211024686
  45. Habibi, M., Ghazanfari, A., Assempour, A., Naghdabadi, R. and Hashemi, R. (2017), "Determination of forming limit diagram using two modified finite element models", Mech Eng. 48(4), 141-144. https://doi.org/10.22060/MEJ.2016.664
  46. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019a), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", Eur. Phys. J. Plus, 134(6), 307. https://doi.org/10.1140/epjp/i2019-12742-7
  47. Habibi, M., Hashemi, R., Ghazanfari, A., Naghdabadi, R. and Assempour, A. (2018a), "Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(8), 625-636. https://doi.org/10.1177/1464420716642258
  48. Habibi, M., Hashemi, R., Sadeghi, E., Fazaeli, A., Ghazanfari, A. and Lashini, H. (2016), "Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures", J. Mater. Eng. Perform., 25(2), 382-389. https://doi.org/10.1007/s11665-016-1882-1
  49. Habibi, M., Hashemi, R., Tafti, M.F. and Assempour, A. (2018b), "Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding", J. Manuf. Pr., 31, 310-323. https://doi.org/10.1016/j.jmapro.2017.11.009
  50. Habibi, M., Mohammadgholiha, M. and Safarpour, H. (2019b), "Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell", Journal of the Brazilian Society of Mechanical Sciences and Engineering. 41(5), 221. https://doi.org/10.1007/s40430-019-1715-x
  51. Habibi, M., Mohammadi, A., Safarpour, H. and Ghadiri, M. (2019c), "Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell", Mech. Based Des. Struct., 1-30. https://doi.org/10.1080/15397734.2019.1701490.
  52. Habibi, M., Mohammadi, A., Safarpour, H., Shavalipour, A. and Ghadiri, M. (2019d), "Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator", Mech. Based Des. Struct., 1-19. https://doi.org/10.1080/15397734.2019.1697932
  53. Habibi, M., Safarpour, M. and Safarpour, H. (2020), "Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods", Mech. Based Des. Struct., 1-22. https://doi.org/10.1080/15397734.2020.1779086
  54. Habibi, M., Taghdir, A. and Safarpour, H. (2019e), "Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets", Compos. Part B Eng., 175, 107125. https://doi.org/10.1016/j.compositesb.2019.107125
  55. Hashemi, H.R., Alizadeh, A.a., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Wave Random Complex Med., 1-27. https://doi.org/10.1080/17455030.2019.1662968
  56. He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin Wall. Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019
  57. Hou, S., Qiao, L. and Xing, L. (2022), "Artificial neural fuzzy system and monitoring the process via IoT for optimization synthesis of nano-size polymeric chains", Adv. Nano Res., 12(4), 375-386. https://doi.org/10.12989/ANR.2022.12.4.375
  58. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1- 17. https://doi.org/10.1007/s00366-021-01399-3
  59. Iadicola, M.A. and Banerjee, D.K. (2019). "A design of experiments approach for determining sensitivities of forming limit analyses to experimental parameters", Mech.Biol. Syst. Micro Nanomech., 4.
  60. Igali, D., Wei, D., Zhang, D. and Perveen, A. (2020), "A comparative analysis of sheeting die geometries using numerical simulations", Adv. Comput. Des., 5(2), 111-125. https://doi.org/10.12989/acd.2020.5.2.111
  61. Janssen, P., De Keijser, T.H. and Geers, M. (2006), "An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness", Mater. Sci. Eng. A, 419(1-2), 238-248. https://doi.org/10.1016/j.msea.2005.12.029
  62. Jiang, C., Zheng, Y., Wang, D., Zheng, Y., Xie, C., Shi, L., Liu, Z. and Tang, Y. (2022), "Unusual size effect in ion and charge transport in micron-sized particulate aluminum anodes of lithium-ion batteries", Angewandte Chemie Int., e202208370. https://doi.org/10.1002/anie.202208370
  63. Kesornsit, W. and Sirisathitkul, Y. (2022), "Water consumption prediction based on machine learning methods and public data", Adv. Comput. Des., 7(2), 113-128. https://doi.org/10.12989/acd.2022.7.2.113
  64. Kong, F., Dong, F., Duan, M., Habibi, M., Safarpour, H. and Tounsi, A. (2022), "On the vibrations of the Electrorheological sandwich disk with composite face sheets considering pre and post-yield regions", Thin Wall. Struct., 179, 109631. https://doi.org/10.1016/j.tws.2022.109631
  65. Kotkunde, N., Deole, A.D. and Gupta, A.K. (2014), "Prediction of forming limit diagram for Ti-6Al-4V alloy using artificial neural network", Procedia Mater. Sci., 6, 341-346. https://doi.org/10.1016/j.mspro.2014.07.043
  66. Kumar, S.P., S.Elangovan and R.Mohanraj (2020), "Experimental study on single point incremental forming of Inconel 718", Transactions of the Canadian Society for Mechanical Engineering, 44(2), 179-188. https://doi.org/10.1139/tcsme-2018-0273
  67. Lande, B. and Mitzner, W. (2006), "Analysis of lung parenchyma as a parametric porous medium", J. Appl. Physiol., 101(3), 926-933. https://doi.org/10.1152/japplphysiol.01548.2005
  68. Li, J., Cheng, F., Lin, G. and Wu, C. (2022), "Improved hybrid method for the generation of ground motions compatible with the multi-damping design spectra", J. Earthq. Eng., 1-27. https://doi.org/10.1080/13632469.2022.2095059
  69. Li, J., Tang, F. and Habibi, M. (2020a), "Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01110-y
  70. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020b), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w
  71. Liang, L., Xu, M., Chen, Y., Zhang, T., Tong, W., Liu, H., Wang, H. and Li, H. (2021), "Effect of welding thermal treatment on the microstructure and mechanical properties of nickel-based superalloy fabricated by selective laser melting", Mater. Sci. Eng. A, 819, 141507. https://doi.org/10.1016/j.msea.2021.141507
  72. Liu, H., Shen, S., Oslub, K., Habibi, M. and Safarpour, H. (2021a), "Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01316-8
  73. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M. and Issakhov, A. (2021b), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2
  74. Liu, K., Ke, F., Huang, X., Yu, R., Lin, F., Wu, Y. and Ng, D.W.K. (2021c), "Deepban: A temporal convolution-based communication framework for dynamic WBANS", IEEE T Commun., 69(10), 6675-6690. https://doi.org/10.1109/TCOMM.2021.3094581
  75. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1784201
  76. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544
  77. Lori, E.S., Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01004-z
  78. Lu, S., Ban, Y., Zhang, X., Yang, B., Liu, S., Yin, L. and Zheng, W. (2022), "Adaptive control of time delay teleoperation system with uncertain dynamics", Front. Neurorobot., 16, 928863-928863. https://doi.org/10.3389/fnbot.2022.928863
  79. Luo, G., Yuan, Q., Li, J., Wang, S. and Yang, F. (2022a), "Artificial intelligence powered mobile networks: From cognition to decision", IEEE Network, 36(3), 136-144. https://doi.org/10.1109/MNET.013.2100087
  80. Luo, G., Zhang, H., Yuan, Q., Li, J. and Wang, F.-Y. (2022b), "ESTNet: Embedded spatial-temporal network for modeling traffic flow dynamics", IEEE T Intell. Transp. Syst., 23(10), 19201-19212. https://doi.org/10.1109/TITS.2022.3167019
  81. Luo, J., Wu, S., Hou, S., Moradi, Z., Habibi, M. and Khadimallah, M.A. (2022c), "Thermally nonlinear thermoelasticity of a one-dimensional finite domain based on the finite strain concept", Eur. J. Mech. A Solids., 104726. https://doi.org/10.1016/j.euromechsol.2022.104726
  82. Mazloom, M. and Mirzamohammadi, S. (2021), "Computing the fracture energy of fiber reinforced cementitious composites using response surface methodology", Adv. Comput. Des., 6(3), 225-239. https://doi.org/10.12989/acd.2021.6.3
  83. Mirsalehi, M., Azhari, M. and Amoushahi, H. (2017), "Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method", Eur. J. Mech. A Solids., 61, 1-13. https://doi.org/10.1016/j.euromechsol.2016.08.008
  84. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(1), 2050010. https://doi.org/10.1142/S1758825120500106
  85. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020b), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-020-01002-1
  86. Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M. and Foong, L. (2019), "Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk", International J. Appl. Mech., 11(10), 1950102. https://doi.org/10.1142/S1758825119501023
  87. Mohammadgholiha, M., Shokrgozar, A., Habibi, M. and Safarpour, H. (2019), "Buckling and frequency analysis of the nonlocal strain-stress gradient shell reinforced with graphene nanoplatelets", J. Vib. Control, 25(19-20), 2627-2640. https://doi.org/10.1177/1077546319863251
  88. Mohammadi, A., Lashini, H., Habibi, M. and Safarpour, H. (2019), "Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM", J. Solid Mech., 11(2), 440-453. https://doi.org/10.22034/JSM.2019.665264
  89. Moradi, H., Atashi, P., Amelirad, O., Yang, J.-K., Chang, Y.-Y. and Kamranifard, T. (2022), "Machine learning modeling and DOE-assisted optimization in synthesis of nanosilica particles via Stober method", Adv. Nano Res., 12(4), 387-403. https://doi.org/10.12989/anr.2022.12.4.387
  90. Naik, B.S., Ramulu, P.J. and Narayanan, R.G. (2010), "Application of a few necking criteria in predicting the forming limit of unwelded and tailor-welded blanks", J. Strain Anal. Eng. Des., 45(2), 79-96. https://doi.org/10.1243/03093247JSA562
  91. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.w. and Nabipour, N. (2020), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomol. Struct. Dyn., 1-12. https://doi.org/10.1080/07391102.2020.1751297
  92. Noell, P., Carroll, J., Hattar, K., Clark, B. and Boyce, B. (2017), "Do voids nucleate at grain boundaries during ductile rupture?", Acta Materialia, 137, 103-114. https://doi.org/10.1016/j.actamat.2017.07.004
  93. Oyarhossein, M.A., Alizadeh, A.a., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Sci. Rep., 10(1), 1-19. https://doi.org/10.1038/s41598-020-61855-w
  94. Park, J.W. and Shin, K.S. (2017), "Improved stretch formability of AZ31 sheet via grain size control", Mater. Sci. Eng. A, 688, 56-61. https://doi.org/10.1016/j.msea.2017.01.101
  95. Pourjabari, A., Hajilak, Z.E., Mohammadi, A., Habibi, M. and Safarpour, H. (2019), "Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures", Comput. Math. Appl., 77(10), 2608-2626. https://doi.org/10.1038/s41598-020-61855-w
  96. Querin, J., Schneider, J. and Horstemeyer, M. (2007), "Analysis of micro void formation at grain boundary triple points in monotonically strained AA6022-T43 sheet metal", Mater. Sci. Eng. A, 463(1-2), 101-106. https://doi.org/10.1016/j.msea.2006.10.167
  97. Safaei, B., Khoda, F.H. and Fattahi, A. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275.
  98. Safarpour, H., Ghanizadeh, S.A. and Habibi, M. (2018), "Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory", Eur. Phys. J. Plus, 133(12), 532.
  99. Safarpour, H., Hajilak, Z.E. and Habibi, M. (2019a), "A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation", Int. J. Mech. Mater. Des., 15(3), 569-583. https://doi.org/10.1007/s10999-018-9431-8
  100. Safarpour, H., Pourghader, J. and Habibi, M. (2019b), "Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator", J. Vib. Control, 25(9), 1543-1557. https://doi.org/10.1177/1077546319828465
  101. Safarpour, M., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-00949-5
  102. Shang, X., Zhang, H., Cui, Z., Fu, M. and Shao, J. (2019), "A multiscale investigation into the effect of grain size on void evolution and ductile fracture: Experiments and crystal plasticity modeling", Int. J. Plastic., 125, 133-149. https://doi.org/10.1016/j.ijplas.2019.09.009
  103. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 1-29. https://doi.org/10.1007/s43452-021-00279-3
  104. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2020a), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01024-9
  105. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707
  106. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020c), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586
  107. Shariati, M., Azar, S.M., Arjomand, M.-A., Tehrani, H.S., Daei, M. and Safa, M. (2020d), "Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load", Geomech. Eng., 20(2), 87-101. https://doi.org/10.12989/gae.2020.20.2.087
  108. Shariati, M., Davoodnabi, S.M., Toghroli, A., Kong, Z. and Shariati, A. (2021a), "Hybridization of metaheuristic algorithms with adaptive neuro-fuzzy inference system to predict load-slip behavior of angle shear connectors at elevated temperatures", Compos. Struct., 114524. https://doi.org/10.1016/j.compstruct.2021.114524
  109. Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.-T. and Salih, M.N. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569
  110. Shariati, M., Ghorbani, M., Naghipour, M., Alinejad, N. and Toghroli, A. (2020e), "The effect of RBS connection on energy absorption in tall buildings with braced tube frame system", Steel Compos. Struct., 34(3), 393-407. https://doi.org/10.12989/scs.2020.34.3.393
  111. Shariati, M., Lagzian, M., Maleki, S., Shariati, A. and Trung, N.T. (2020f), "Evaluation of seismic performance factors for tensiononly braced frames", Steel Compos. Struct., 35(4), 599-609. https://doi.org/10.12989/scs.2020.35.4.599
  112. Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020g), "A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0
  113. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020h), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183
  114. Shariati, M., Naghipour, M., Yousofizinsaz, G., Toghroli, A. and Tabarestani, N.P. (2020i), "Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines", Steel Compos. Struct. 34(3), 377-391. http://doi.org/10.12989/scs.2020.34.3.377
  115. Shariati, M., Shariati, A., Trung, N.T., Shoaei, P., Ameri, F., Bahrami, N. and Zamanabadi, S.N. (2021b), "Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics", Constr. Build. Mater., 267, 120886. https://doi.org/10.1016/j.conbuildmat.2020.120886
  116. Shariati, M., Sulong, N.R. and Khanouki, M.A. (2012), "Experimental assessment of channel shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Mater. Des., 34, 325-331. https://doi.org/10.1016/j.matdes.2011.08.008
  117. Shariati, M., Sulong, N.R., Shariati, A. and Khanouki, M.A. (2016a), "Behavior of V-shaped angle shear connectors: experimental and parametric study", Mater. Struct., 49(9), 3909-3926. https://doi.org/10.1617/s11527-015-0762-8
  118. Shariati, M., Sulong, N.R., Shariati, A. and Kueh, A. (2016b), "Comparative performance of channel and angle shear connectors in high strength concrete composites: An experimental study", Constr. Build. Mater., 120, 382-392. https://doi.org/10.1016/j.conbuildmat.2016.05.102
  119. Shariati, M., Tahmasbi, F., Mehrabi, P., Bahadori, A. and Toghroli, A. (2020j), "Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: An experimental investigation", Steel Compos Struct., 35(2), 237-247. http://doi.org/10.12989/scs.2020.35.2.237
  120. Shokrgozar, A., Safarpour, H. and Habibi, M. (2020), "Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(2), 512-529. https://doi.org/10.1177/0954406219883312
  121. Singh, A.V., Ansari, M.H.D., Rosenkranz, D., Maharjan, R.S., Kriegel, F.L., Gandhi, K., Kanase, A., Singh, R., Laux, P. and Luch, A. (2020a), "Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine", Adv. Healthcare Mater., 9(17), 1901862. https://doi.org/10.1002/adhm.201901862
  122. Singh, A.V., Rosenkranz, D., Ansari, M.H.D., Singh, R., Kanase, A., Singh, S.P., Johnston, B., Tentschert, J., Laux, P. and Luch, A. (2020b), "Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction", Adv. Intell. Syst., 2(12), 2000084. https://doi.org/10.1002/aisy.202000084
  123. Thinakaran, K., Rajasekar, R., Santhi, K. and Nalini, M. (2020), "Predicting the 2-dimensional airfoil by using machine learning methods", Adv. Comput. Des., 5(3), 291-304. https://doi.org/10.12989/acd.2020.5.3.291
  124. Vakondios, D.G. and Kyratsis, P. (2020), "An innovative CAD-based simulation of ball-end milling in microscale", Adv. Comput. Des., 5(1), 13-34. https://doi.org/10.12989/acd.2020.5.1.013
  125. Wang, H., Habibi, M., Marzouki, R., Majdi, A., Shariati, M., Denic, N., Zakic, A., Khorami, M., Khadimallah, M.A. and Ebid, A.A.K. (2022a), "Improving the self-healing of cementitious materials with a hydrogel system", Gels, 8(5), 278. https://doi.org/10.3390/gels8050278
  126. Wang, J., Liang, F., Zhou, H., Yang, M. and Wang, Q. (2022b), "Analysis of position, pose and force decoupling characteristics of a 4-UPS/1-RPS parallel grinding robot", Symmetry, 14(4), 825. https://doi.org/10.3390/sym14040825
  127. Wang, W., Yuan, X., Wu, X. and Liu, Y. (2017), "Fast image dehazing method based on linear transformation", IEEE T Multimed., 19(6), 1142-1155. https://doi.org/10.1109/TMM.2017.2652069
  128. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284
  129. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultrafast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6
  130. Wu, Y., Chen, J., Zhang, L., Ji, J., Wang, Q. and Zhang, S. (2022), "Effect of boron on the structural stability, mechanical properties, and electronic structures of γ'-Ni3Al in TLP joints of nickel-based single-crystal alloys", Mater. Today Commun., 31, 103375. https://doi.org/10.1016/j.mtcomm.2022.103375
  131. Xia, W., Du, J., Habibi, M., Shariati, M. and Khadimallah, M.A. (2022), "Application of Chebyshev-based GDQ and Newmark methods to viscothermoelasticity responses of FG composite annular systems", Eng. Anal. Bound. Elem., 143, 28-42. https://doi.org/10.1016/j.enganabound.2022.06.003
  132. Xiong, Q.M., Chen, Z., Huang, J.T., Zhang, M., Song, H., Hou, X.F., Li, X.B. and Feng, Z.J. (2020), "Preparation, structure and mechanical properties of Sialon ceramics by transition metalcatalyzed nitriding reaction", Rare Metals, 39(5), 589-596. https://doi.org/10.1007/s12598-020-01385-6
  133. Xu, Y., Chen, X., Zhang, H., Yang, F., Tong, L., Yang, Y., Yan, D., Yang, A., Yu, M. and Liu, Z. "Online identification of battery model parameters and joint state of charge and state of health estimation using dual particle filter algorithms", Int. J. Energy Res., 46(14), 19615-19652. https://doi.org/10.1002/er.8541
  134. Yang, L., Dai, Q., Liu, L., Shao, D., Luo, K., Jamil, S., Liu, H., Luo, Z., Chang, B. and Wang, X. (2020), "Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte", Ceram. Int., 46(8), 10917-10924. https://doi.org/10.1016/j.ceramint.2020.01.106
  135. Zadpoor, A.A., Sinke, J. and Benedictus, R. (2009), "Finite element modeling and failure prediction of friction stir welded blanks", Mater. Des., 30(5), 1423-1434. https://doi.org/10.1016/j.matdes.2008.08.018
  136. Zadpoor, A.A., Sinke, J., Benedictus, R. and Pieters, R. (2008), "Mechanical properties and microstructure of friction stir welded tailor-made blanks", Mater. Sci. Eng. A, 494(1-2), 281-290. https://doi.org/10.1016/j.msea.2008.04.042
  137. Zare, R., Najaafi, N., Habibi, M., Ebrahimi, F. and Safarpour, H. (2020), "Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller", Smart Struct. Syst., 26(4), 469-480. https://doi.org/10.12989/sss.2020.26.4.469
  138. Zhang, L., Min, J., Carsley, J.E., Stoughton, T.B. and Lin, J. (2017), "Experimental and theoretical investigation on the role of friction in Nakazima testing", Int. J. Mech. Sci., 133, 217-226. https://doi.org/10.1016/j.ijmecsci.2017.08.020
  139. Zhang, L. and Wang, J. (2012), "Modeling the localized necking in anisotropic sheet metals", Int. J. Plast., 39, 103-118. https://doi.org/10.1016/j.ijplas.2012.05.005
  140. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Wave Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1948627
  141. Zhang, Z., Luo, C. and Zhao, Z. (2020), "Application of probabilistic method in maximum tsunami height prediction considering stochastic seabed topography", Natural Hazards, 104(3), 2511-2530. https://doi.org/10.1007/s11069-020-04283-3
  142. Zhao, R., Dai, H. and Yao, H. (2022a), "Liquid-metal magnetic soft robot with reprogrammable magnetization and stiffness", IEEE Robot. Automat. Lett., 7(2), 4535-4541. https://doi.org/10.1109/LRA.2022.3151164
  143. Zhao, W., Suo, H., Wang, S., Ma, L., Wang, L., Wang, Q. and Zhang, Z. (2022b), "Mg gas infiltration for the fabrication of MgB2 pellets using nanosized and microsized B powders", J. Eur. Ceram. Soc., 42(15), 7036-7048. https://doi.org/10.1016/j.jeurceramsoc.2022.08.029
  144. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295
  145. Zhou, X., Wang, P., Al-Dhaifallah, M., Rawa, M. and Khadimallah Mohamed, A. (2022), "A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet", Adv. Nano Res., 12(1), 81-99. https://doi.org/10.12989/anr.2022.12.1.081
  146. Zhu, H. and Zhao, R. (2022), "Nucleation of CVD-prepared hexagonal boron nitride on Ni (100), Ni (110) and Ni (111) surfaces: A theoretical study", Vacuum, 111396. https://doi.org/10.1016/j.vacuum.2022.111396
  147. Zhu, L., Ren, H., Habibi, M., Mohammed, K.J. and Khadimallah, M.A. (2022), "Predicting the environmental economic dispatch problem for reducing waste nonrenewable materials via an innovative constraint multi-objective Chimp Optimization Algorithm", J. Clean. Prod., 132697. https://doi.org/10.1016/j.jclepro.2022.132697
  148. Zhu, Q., Wang, C., Qin, H., Chen, G. and Zhang, P. (2019), "Effect of the grain size on the microtensile deformation and fracture behaviors of a nickel-based superalloy via EBSD and in-situ synchrotron radiation X-ray tomography", Mater. Character., 156, 109875. https://doi.org/10.1016/j.matchar.2019.109875
  149. Zuo, J. and Lin, X. (2022), "High-power laser systems", Laser Photonics Rev., 16(5), 2270025. https://doi.org/10.1002/lpor.202270025