References
- Ahouel, M., Houari, M.S.A., Bedia, E.A.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
- Akbas, S.D. (2019), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. https://doi.org/10.22055/jacm.2018.26819.1360.
- Amar, L.H.H., Kaci, A. and Tounsi, A. (2017), "On the size-dependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527. https://doi.org/10.12989/SCS.2017.64.5.527.
- Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257-278. https://doi.org/10.12989/anr.2018.6.3.257.
- Azandariani, M.G., Gholami, M., Nikzad, A., Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37. https://doi.org/10.12989/ANR.2022.12.1.037.
- Bai, Y., Nardi, D.C., Zhou, X., Picon, R.A. and Florez-Lopez, J. (2021), "A new comprehensive model of damage for flexural subassemblies prone to fatigue", Comput. Struct., 256, 106639. https://doi.org/10.1016/j.compstruc.2021.106639.
- Belarbi, M.O., Houari, M.S.A., Daikh, A.A., Garg, A., Merzouki, T., Chalak, H.D. and Hirane, H. (2021), "Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.113712.
- Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
- Chen, H. and Li, S. (2022), "Collinear nonlinear mixed-frequency ultrasound with FEM and experimental method for structural health prognosis", Processes, 10(4), 656. https://doi.org/10.3390/pr10040656.
- Chen, H., Liu, M., Chen, Y., Li, S. and Miao, Y. (2022), "Nonlinear lamb wave for structural incipient defect detection with sequential probabilistic ratio test", Secur. Commun. Networks, 2022. https://doi.org/10.1155/2022/9851533.
- Deng, H. and Cheng, W. (2016), "Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams", Compos. Struct., 141, 253-263. https://doi.org/10.1016/j.compstruct.2016.01.051.
- Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., 6(2), 93-112. https://doi.org/10.12989/anr.2018.6.2.093.
- Ebrahimi, F., Fardshad, R.E. and Mahesh, V. (2019), "Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391-403. https://doi.org/10.12989/anr.2019.7.6.391.
- Ebrahimi, F. and Haghi, P. (2018), "Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment", Adv. Nano Res., 6(3), 201-217. https://doi.org/10.12989/anr.2018.6.3.201.
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Firouzianhaij, A., Gorji Azandariani, M., Usefi, N. and Samali, B. (2022), "Performance of baseplate connections in CFS storage rack systems: An experimental, numerical and theoretical study", J. Constr. Steel Res., 196, 107421. https://doi.org/10.1016/j.jcsr.2022.107421.
- Gao, Y., Xiao, W. shen, and Zhu, H. (2019), "Nonlinear thermal buckling of bi-directional functionally graded nanobeams", Struct. Eng. Mech., 71(6), 669-682. https://doi.org/10.12989/sem.2019.71.6.669.
- Gholami, M., Zare, E., Gorji Azandariani, M. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
- Gorji Azandariani, A., Gholhaki, M. and Gorji Azandariani, M. (2022a), "Assessment of damage index and seismic performance of steel plate shear wall (SPSW) system", J. Constr. Steel Res., 191, 107157. https://doi.org/10.1016/j.jcsr.2022.107157.
- Gorji Azandariani, M., Ghanbari-Ghazijahani, T., Mohebkhah, A. and Classen, M. (2021a), "Concrete- and timber-filled tubes under axial compression - Numerical and theoretical study", J. Build. Eng., 44, 103231. https://doi.org/10.1016/j.jobe.2021.103231.
- Gorji Azandariani, M. and Gholami, M. (2022a), "Seismic fragility investigation of hybrid structures BRBF with eccentric-configuration and self-centering frame", J. Constr. Steel Res., 107300. https://doi.org/https://doi.org/10.1016/j.jcsr.2022.107300.
- Gorji Azandariani, M. and Gholami, M. (2022b), "Seismic fragility investigation of hybrid structures BRBF with eccentricconfiguration and self-centering frame", J. Constr. Steel Res., 196, 107300. https://doi.org/10.1016/j.jcsr.2022.107300.
- Gorji Azandariani, M., Gholami, M., Vaziri, E. and Nikzad, A. (2021b), "Nonlinear static analysis of a bi-directional functionally graded microbeam based on a nonlinear elastic foundation using modified couple stress theory", Arab. J. Sci. Eng., 1-11. https://doi.org/10.1007/s13369-021-06053-0.
- Gorji Azandariani, M., Gholami, M. and Zare, E. (2022b), "Development of spectral element method for free vibration of axially-loaded functionally-graded beams using the first-order shear deformation theory", Eur. J. Mech. A Solids, 96, 104759. https://doi.org/10.1016/j.euromechsol.2022.104759.
- Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Gorji Azandariani, A. (2022c), "Assessment of cyclic behavior and performance of hybrid linked-column steel plate shear wall system", J. Build. Eng., 58, 104963. https://doi.org/10.1016/j.jobe.2022.104963.
- Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Zirakian, T. (2021c), "Study of effects of beam-column connection and column rigidity on the performance of SPSW system", J. Build. Eng., 33 https://doi.org/10.1016/j.jobe.2020.101821.
- Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021d), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
- Gu, M., Mo, H., Qiu, J., Yuan, J. and Xia, Q. (2022), "Behavior of floating stone columns reinforced with geogrid encasement in model tests", Front. Mater., Frontiers, 9, 503. https://doi.org/10.3389/fmats.2022.980851.
- Hao, R.B., Lu, Z.Q., Ding, H. and Chen, L.Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: analysis and experiment", Nonlinear Dyn., 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
- Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
- Hu, Z., Shi, T., Cen, M., Wang, J., Zhao, X., Zeng, C., Zhou, Y., Fan, Y., Liu, Y. and Zhao, Z. (2022), "Research progress on lunar and Martian concrete", Constr. Build. Mater., 343, 128117. https://doi.org/10.1016/j.conbuildmat.2022.128117.
- Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded rc columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8), 04020157. https://doi.org/10.1061/(asce)st.1943-541x.0002725.
- Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
- Huang, S. and Liu, C. (2022), "A computational framework for fluid-structure interaction with applications on stability evaluation of breakwater under combined tsunami-earthquake activity", Comput. Civ. Infrastruct. Eng., 38(3), 325-352. https://doi.org/10.1111/mice.12880.
- Jia, X.L., Ke, L.L., Feng, C.B., Yang, J. and Kitipornchai, S. (2015), "Size effect on the free vibration of geometrically nonlinear functionally graded micro-beams under electrical actuation and temperature change", Compos. Struct., 133, 1137-1148. https://doi.org/10.1016/j.compstruct.2015.08.044.
- Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
- Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., Elsevier Masson SAS, 82-83, 499-512. https://doi.org/10.1016/j.ast.2018.10.001.
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089.
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008.
- Li, S.R. and Batra, R.C. (2013), "Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams", Compos. Struct., 95, 5-9. https://doi.org/10.1016/j.compstruct.2012.07.027.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Liu, C., Zhao, Y., Wang, Y., Zhang, T. and Jia, H. (2021), "Hybrid dynamic modeling and analysis of high-speed thin-rimmed gears", J. Mech. Des. Trans. ASME, 143(12) https://doi.org/10.1115/1.4051137.
- Luat, D.T., Thom, D. Van, Thanh, T.T., Minh, P. Van, Ke, T. Van, and Vinh, P. Van. (2021), "Mechanical analysis of bi-functionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 055. https://doi.org/10.12989/ANR.2021.11.1.055.
- Nejad, M.Z. (2016), "Hadi A. Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005
- Nejad, M.Z. and Hadi, A. (2016), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011.
- Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161.
- Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's nonlocal elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417.
- Niknam, H., Fallah, A. and Aghdam, M.M. (2014), "Nonlinear bending of functionally graded tapered beams subjected to thermal and mechanical loading", Int. J. Non. Linear. Mech., 65, 141-147. https://doi.org/10.1016/j.ijnonlinmec.2014.05.011.
- Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns hsdt for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
- Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003.
- Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
- Rousta, A.M. and Azandariani, M.G. (2022), "Micro-finite element and analytical investigations of seismic dampers with steel ring plates", Steel Compos. Struct., 43(5), 565. https://doi.org/10.12989/SCS.2022.43.5.565.
- Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129. https://doi.org/10.12989/SEM.2021.80.2.129.
- Sanjay Anandrao, K., Gupta, R.K., Ramchandran, P. and Venkateswara Rao, G. (2012), "Non-linear free vibrations and post-buckling analysis of shear flexible functionally graded beams", Struct. Eng. Mech., 44(3), 339-361. https://doi.org/10.12989/sem.2012.44.3.339.
- Setoodeh, A.R. and Rezaei, M. (2017), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209.
- Shan, Y., Zhao, J., Tong, H., Yuan, J., Lei, D. and Li, Y. (2022), "Effects of activated carbon on liquefaction resistance of calcareous sand treated with microbially induced calcium carbonate precipitation", Soil Dyn. Earthq. Eng., 161, 107419. https://doi.org/10.1016/j.soildyn.2022.107419.
- Shi, L., Xiao, X., Wang, X., Liang, H. and Wang, D. (2022), "Mesostructural characteristics and evaluation of asphalt mixture contact chain complex networks", Constr. Build. Mater., 340, 127753. https://doi.org/10.1016/j.conbuildmat.2022.127753.
- Simsek, M. (2014), "Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory", Compos. Part B Eng., 56, 621-628. https://doi.org/10.1016/j.compositesb.2013.08.082.
- Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013.
- Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
- Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259.
- Talebizadehsardari, P., Eyvazian, A., Gorji Azandariani, M., Nhan Tran, T., Kumar Rajak, D. and Babaei Mahani, R. (2020), "Buckling analysis of smart beams based on higher order shear deformation theory and numerical method", Steel Compos. Struct., 35(5), 635-640. https://doi.org/https://doi.org/10.12989/scs.2020.35.5.635.
- Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
- Usefvand, M., Rousta, A.M., Azandariani, M.G. and Abdolmaleki, H. (2021), "Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior", Smart Struct. Syst., 28(4), 579. https://doi.org/10.12989/SSS.2021.28.4.579.
- Vaziri, E., Gholami, M. and Gorji Azandariani, M. (2021), "The Wall-Frame Interaction Effect in Corrugated Steel Plate Shear Walls Systems", Int. J. Steel Struct., 21(5), 1680-1697. https://doi.org/10.1007/s13296-021-00529-3.
- Wang, J.F., Cao, S.H. and Zhang, W. (2021), "Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate", Eur. J. Mech. A Solids, 85, 104105. https://doi.org/10.1016/j.euromechsol.2020.104105.
- Wei, J., Xie, Z., Zhang, W., Luo, X., Yang, Y. and Chen, B. (2021), "Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading", Eng. Struct., 230, 111599. https://doi.org/10.1016/j.engstruct.2020.111599.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yuan, J., Lei, D., Shan, Y., Tong, H., Fang, X. and Zhao, J. (2022), "Direct shear creep characteristics of sand treated with microbial-induced calcite precipitation", Int. J. Civ. Eng., 20(7), 763-777. https://doi.org/10.1007/s40999-021-00696-8.
- Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909.
- Zhang, C., Mousavi, A.A., Masri, S.F., Gholipour, G., Yan, K. and Li, X. (2022a), "Vibration feature extraction using signal processing techniques for structural health monitoring: A review", Mech. Syst. Signal Process., 177, 109175. https://doi.org/10.1016/j.ymssp.2022.109175.
- Zhang, H., Liu, Y. and Deng, Y. (2021), "Temperature gradient modeling of a steel box-girder suspension bridge using Copulas probabilistic method and field monitoring", Adv. Struct. Eng., 24(5), 947-961. https://doi.org/10.1177/1369433220971779.
- Zhang, W., Liu, X., Huang, Y. and Tong, M.N. (2022b), "Reliability-based analysis of the flexural strength of concrete beams reinforced with hybrid BFRP and steel rebars", Arch. Civ. Mech. Eng., 22(4), 171. https://doi.org/10.1007/s43452-022-00493-7.
- Zhou, X., Bai, Y., Nardi, D.C., Wang, Y., Wang, Y., Liu, Z., Picon, R.A. and Florez-Lopez, J. (2022), "Damage evolution modeling for steel structures subjected to combined high cycle fatigue and high-intensity dynamic loadings", Int. J. Struct. Stab. Dyn., 22(3), 2240012. https://doi.org/10.1142/S0219455422400120.
- Zhu, X. Q. and Law, S.S. (2001), "Precise time-step integration for the dynamic response of a continuous beam under moving loads", J. Sound Vib., 240(5), 962-970. https://doi.org/10.1006/jsvi.2000.3184.
- Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145.