References
- Azhiri, R.B., Mehdizad Tekiyeh, R., Zeynali, E., Ahmadnia, M. and Javidpour, F. (2018), "Measurement and evaluation of joint properties in friction stir welding of ABS sheets reinforced by nanosilica addition", Meas. J. Int. Meas. Confederat., 127, 198204. https://doi.org/10.1016/j.measurement.2018.05.005.
- Gao, J., Li, C., Shilpakar, U. and Shen, Y. (2015), "Improvements of mechanical properties in dissimilar joints of HDPE and ABS via carbon nanotubes during friction stir welding process", Mater. Des., 86, 289-296. https://doi.org/10.1016/j.matdes.2015.07.095.
- Kiss, Z. and Czigany, T. (2007), "Applicability of friction stir welding in polymeric materials", Periodica Polytechnica Mech. Eng., 51(1), 15-18. https://doi.org/10.3311/pp.me.2007-1.02.
- Kiss, Z. and Czigany, T. (2012), "Microscopic analysis of the morphology of seams in friction stir welded polypropylene", Exp. Polym. Lett., 6(1), 54-62. https://doi.org/10.3144/expresspolymlett.2012.6.
- Makela, M. (2017), "Experimental design and response surface methodology in energy applications: A tutorial review", Energy Convers. Manage., 151, 630-640. https://doi.org/10.1016/j.enconman.2017.09.021.
- Peng, P., Wang, K., Wang, W., Huang, L., Qiao, K. and Che, Q. (2018), "High-performance aluminium foam sandwich prepared through friction stir welding", Mater. Lett., 236, 295-298. https://doi.org/10.1016/j.matlet.2018.10.125.
- Rahimipetroudi, I., Rashid, K., Yang, J. B. and Dong, S.K. (2020), "Use of response surface methodology to optimize NOx emissions and efficiency of W-type regenerative radiant tube burner under plasma-assisted combustion", J. Clean. Prod., 244, 118626. https://doi.org/10.1016/j.jclepro.2019.118626.
- Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2016), Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons.
- Rezgui, M.A., Ayadi, M., Cherouat, A., Hamrouni, K., Zghal, A. and Bejaoui, S. (2010), "Application of Taguchi approach to optimize friction stir welding parameters of polyethylene", EPJ Web Conf., 6, 1-8. https://doi.org/10.1051/epjconf/20100607003.
- Sadeghian, N. and Besharati Givi, M.K. (2015), "Experimental optimization of the mechanical properties of friction stir welded Acrylonitrile Butadiene Styrene sheets", Mater. Des., 67, 145-153. https://doi.org/10.1016/j.matdes.2014.11.032.
- Saeedy, S., Givi, M.B. and Sadeghian, N. (2010), "Design and evaluation of feasibility study of friction stir welding of thermoplastic polypropylene sheets", Proceeding of the ICME Conference on Manufacturing Engineering, Babol, Iran, 1-5.
- Sahu, S.K., Mishra, D., Mahto, R.P., Sharma, V.M., Pal, S.K., Pal, K., Banerjee, S. and Dash, P. (2018), "Friction stir welding of polypropylene sheet", Eng. Sci. Technol., 21(2), 245-254. https://doi.org/10.1016/j.jestch.2018.03.002.
- Sahu, S.K., Pal, K. and Das, S. (2020), "Parametric study on joint quality in friction stir welding of polycarbonate", Mater. Today Proceedings, 39, 1275-1280. https://doi.org/10.1016/j.matpr.2020.04.218.
- Squeo, E.A., Bruno, G., Guglielmotti, A. and Quadrini, F. (2009), "Friction stir welding of polyethylene sheets", Friction Stir Weld. Polyethylene Sheets, 241-246.
- Zhai, M., Wu, C.S. and Su, H. (2020), "Influence of tool tilt angle on heat transfer and material flow in friction stir welding", J. Manuf. Pr., 59, 98-112. https://doi.org/10.1016/j.jmapro.2020.09.038.