과제정보
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022H1D8A3037396).
참고문헌
- An, Y., and Jo, H. 2021. A Study on XAI-based Clinical Decision Support System. The Journal of the Korea Contents Association 21(12):13-22. https://doi.org/10.5392/JKCA.2021.21.12.013
- Arrieta, A. B., Daz-Rodrguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., and Herrera, F. 2020. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58:82-115. https://doi.org/10.1016/j.inffus.2019.12.012
- Chen.T., and Guestrin. C. 2016. XGBoost: A Scalable Tree Boosting System, KDD 2016: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data MiningAugust 2016, 785-794.
- Chung, J., and Kim, D. 2008. Study on the design optimization of injection-molded DVD-Tray parts using CAE Simulation: Korea Academia-Industrial Cooperation Society 9(6):1726-1732. https://doi.org/10.5762/KAIS.2008.9.6.1726
- Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E. 2015. Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics 24(1):44-65. https://doi.org/10.1080/10618600.2014.907095
- Hwang, S., Han, S., and Lee, H. 2021. A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree: Journal of the Korea Academia-Industrial Cooperation Society 22(4):580-586. https://doi.org/10.5762/KAIS.2021.22.4.580
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T. 2017. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
- Kim, G., Park, J., and Ahn, H., 2001. Direct Search-Based Robust Design of Warpage in Injection Molded Parts: J Korean Soc Qual Manag. 29(3):87.
- Korea AI Manufacturing Platform (KAMP), Injection Molding Machine AI Dataset, KAIST (UNIST, EPM Solutions), December 14, 2020, https://www.kamp-ai.kr/front/main/MAIN.01.01.jsp.
- Lee, H., Hong, Y., and Kang, S. 2021., Identifying Process Capability Index for Electricity Distribution System through Thermal Image Analysis: J Korean Soc Qual Manag. 49(3):327-340.
- Lee, H., and Kim, Y. 2022., A Pre-processing Process Using TadGAN-based Time-series Anomaly Detection: J Korean Soc Qual Manag. 50(3):459-471.
- Lee, K., Lee, K., and Ko, T. 2021. SMOTE Using Border-points and Expectation-maximization Algorithm for Imbalanced Data Classification: Journal of the Korean Institute of Industrial Engineers 47(3):232-241. https://doi.org/10.7232/JKIIE.2021.47.3.232
- Lundberg, S. M., and Lee, S. 2017. A unified approach to interpreting model predictions: Advances in neural information processing systems, 30.
- Mohammed. R., Rawashdeh. J., and Abdullah. M. 2020. Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results: International Conference on Information and Communication Systems.
- Oh, H., Son, A., and Lee, Z. 2021. Occupational accident prediction modeling and analysis using SHAP: Journal of Digital Contents Society 22(7):1115-1123. https://doi.org/10.9728/dcs.2021.22.7.1115
- Thiriez, A., and Gutowski, T. 2006. An environmental analysis of injection molding: In Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment, 195-200.
- Wu, H., Ruan, W., Wang, J., Zheng, D., Liu, B., Geng, Y., Chai, X., Chen, J., Li, S., and Helal, S. 2021. Interpretable machine learning for covid-19: An empirical study on severity prediction task. IEEE Transactions on Artificial Intelligence.
- Yang, D., Lee, J., Yoon, K., and Kim, J. 2020. A Study on the Prediction of Optimized Injection Molding Condition using Artificial Neural Network (ANN). Transactions of Materials Processing 29(4). https://doi.org/10.5228/KSTP.2020.29.4.218
- Zhao, P., Zhou, H., He, Y., Cai, K., and Fu, J. 2014. A nondestructive online method for monitoring the injection molding process by collecting and analyzing machine running data. The International Journal of Advanced Manufacturing Technology 72(5):765-777. https://doi.org/10.1007/s00170-014-5711-0