DOI QR코드

DOI QR Code

자율이동체의 주행 시험을 위한 선분과 원호로 이루어진 경로 자동 생성 방법

A method for automatically generating a route consisting of line segments and arcs for autonomous vehicle driving test

  • Se-Hyoung Cho (Division of Information and Communications Engineering, Sunmoon University)
  • 투고 : 2022.11.28
  • 심사 : 2023.01.09
  • 발행 : 2023.03.31

초록

자율주행 자동차 또는 자율주행 로봇의 개발을 위해서는 경로 주행 시험이 필요하다. 이러한 시험은 실제 환경뿐만 아니라 시뮬레이션 환경에서도 수행되고 있다. 특히 강화학습과 딥러닝을 이용한 개발을 위해서 다양한 환경의 데이터가 필요한 경우에 시뮬레이터를 통한 개발도 이루어지고 있다. 이를 위해서는 수작업으로 설계된 경로뿐만 아니라 무작위로 자동으로 설계된 다양한 경로의 활용이 필요하다. 이러한 시험장 설계는 실제 건설, 제작에도 활용할 수 있다. 본 논문에서는 원호와 선분의 조합으로 이루어진 주행 시험 경로를 무작위로 생성하는 방법을 소개한다. 이는 원호와 선분의 거리를 구하여 충돌 여부를 판별하는 방법과 경로를 계속해서 이어 나가는 것이 불가능할 경우 경로 일부를 삭제하고 적절한 경로를 다시 만들어 나가는 알고리듬으로 이루어진다.

Path driving tests are necessary for the development of self-driving cars or robots. These tests are being conducted in simulation as well as real environments. In particular, for development using reinforcement learning and deep learning, development through simulators is also being carried out when data of various environments are needed. To this end, it is necessary to utilize not only manually designed paths but also various randomly and automatically designed paths. This test site design can be used for actual construction and manufacturing. In this paper, we introduce a method for randomly generating a driving test path consisting of a combination of arcs and segments. This consists of a method of determining whether there is a collision by obtaining the distance between an arc and a line segment, and an algorithm that deletes part of the path and recreates an appropriate path if it is impossible to continue the path.

키워드

참고문헌

  1. M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao and K. Zieba, "End to End Learning for Self-Driving Cars," 2016. DOI: 10.48550/arXiv.1604.07316 
  2. H. Xu, Y. Gao, F. Yu and T. Darrell, "End-to-end Learning of Driving Models from Large-scale Video Datasets," 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017. DOI: 10.48550/arXiv.1612.01079 
  3. S. Shah, S. Dey, C. Lovett and A, Kapoor, "AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In: Hutter, M., Siegwart, R. (eds) Field and Service Robotics," Springer Proceedings in Advanced Robotics, 2018. DOI: 10.48550/arXiv.1705.05065 
  4. Kim, Min-Tae and Kim, Byung-Wook, "Autonomous driving technique based on CNN using AirSim," Proc. Korean Society of Electronics Engineers Conference, pp.1018-1021, 2020. 
  5. Joo, Eun-Oh, Kwag, Ye-Eun, Kim, Min-Soo, "CARLA-based virtual environment training data collection and real-world usability validation," Proc. KOREA Spatial Information Society, pp. 141-143, 2022.
  6. Lee, Shinkyung, Sung, Kyungbok and. Min, Kyungwook, "Development of Autonomous Driving Scenario Editor based on Carla," Proc. Korean Society of Automotive Engineers, pp.405-406, 2020. 
  7. M. Bosello, R. Tse and G. Pau, "Train in Austria, Race in Montecarlo: Generalized RL for Cross-Track F1tenth LIDAR-Based Races," Proc. of IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), pp.290-298, 2022. DOI: 10.1109/CCNC49033.2022.9700730 
  8. D. Loiacono, A. Prete, P. L. Lanzi and L. Cardamone, "Learning to overtake in TORCS using simple reinforcement learning," IEEE Congress on Evolutionary Computation, pp.1-8, 2010. DOI: 10.1109/CEC.2010.5586191 
  9. J. A. Reeds and L. A. Shepp, "Optimal paths for a car that goes both forwards and backwards," Pacific J. of Mathematics, vol.145, no.2, pp.367-393, 1990. DOI: 10.2140/pjm.1990.145.367 
  10. "IN MEMORIAM Lester Eli Dubins Professor of Mathematics and Statistics, Emeritus UC Berkeley 1920~2010," University of California, 2012. 
  11. L. E. Dubins, "On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents," American J. of Mathematicsm, vol.79, no.3, pp.497-516, 1957. DOI: 10.2307/2372560 
  12. Harold H. Johnson, "An application of the maximum principle to the geometry of plane curves," Proc. American Mathematical Society, vol.44, no.2, pp.432-435, 1974. DOI: 10.2307/2040451 
  13. J.-D. Boissonat, A. Cerezo and K. Leblond, "Shortest Paths of Bounded Curvature in the Plane," Proc. IEEE Int. Conf. on Robotics and Automation, vol.3, pp.2315-2320, 1992. DOI: 10.1109/ROBOT.1992.220117 
  14. Ayala Jose, Kirszenblat David and Rubinstein Hyam, "A Geometric approach to shortest bounded curvature paths," J. of Communications in Analysis and Geometry, vol.26, no.4, pp.679-697, 2018. DOI: 10.48550/arXiv.1403.4899 
  15. Ayala Jose, "Length minimising bounded curvature paths in homotopy classes," J. of Topology and Its Applications, vol.193, pp.140-151, 2015. DOI: 10.1016/j.topol.2015.06.008 
  16. Anisi David, "Optimal Motion Control of a Ground Vehicle," Swedish Research Defence Agency, pp.1650-1942, 2003. 
  17. Xuan-Nam Bui, J.-D. Boissonnat, P. Soueres and J.-P. Laumond, "Shortest Path Synthesis for Dubins Non-Holonomic Robot," Conf. IEEE Robotics and Automation, vol.1, pp.2-7, 1994. DOI: 10.1109/ROBOT.1994.351019 
  18. Satyanarayana Manyam and Sivakumar Rathinam, "On Tightly Bounding the Dubins Traveling Salesman's Optimum," J. of Dynamic Systems, Measurement, and Control, vol.140, no.7, 2016. DOI: 10.1115/1.4039099 
  19. Satyanarayana G. Manyam, Sivakumar Rathinam, David Casbeer and Eloy Garcia, "Tightly Bounding the Shortest Dubins Paths Through a Sequence of Points," J. of Intelligent & Robotic Systems, vol.88, no.2-4, pp.495-511, 2017. DOI: 10.1007/s10846-016-0459-4 
  20. J. -P. Hong, Y. -J. Choi and K. -H. Park, "Path Planning and Mobile Robot Control for the Obstacle Avoidance by Using Dubin's Curve," roc. Korean Society of Control and Robot Systems Conference, pp.25-29, 2007. 
  21. Dongsin Kim and Keumjin Lee, "Shortest Dubins Path from a Point to a Line," J. of The Korean Society for Aeronautical and Space Sciences, pp.631-632, 2019. 
  22. You Young Yang and Henzeh Leeghim, "Shortest Path Generation and Tracking Using Dubins Path for Unmanned Vehicles," J. of The Korean Society for Aeronautical and Space Sciences, pp.251-252, 2020. 
  23. Huiseong Song, Mingu Kim and Youdan Kim, "Rendezvous Path Planning of UAV using Dubins Curve," J. of The Korean Society for Aeronautical and Space Sciences, pp.234-235, 2016. 
  24. H. -D. Oh, H. -S. Shin and M. -J. Tak, "Integration of Task Assignment and Path Planning for Multi-UAVs Using Dubins Set," J. of The Korean Society for Aeronautical and Space Sciences, pp.729-733, 2009. 
  25. O, Su-Hun, Ha, Chul-Su, Kang, Seung-Eun, Mok, Ji-hyun, Ko, Sangho and Lee, Yong-Won, "3-Dimensional Path Planning and Guidance using the Dubins Curve for an 3-DOF Point-mass Aircraft Model," J. of the Korean Society for Aeronautical Science and Flight operation, vol.24, no.1, pp.1-9, 2016. DOI: 10.12985/ksaa.2016.24.1.001 
  26. Daniel Sunday, "Practical Geometry Algorithms: With C++ Code," 2021.