Acknowledgement
본 연구는 2022 년 상명대학교 교내연구비를 지원 받아 수행하였음.
References
- Al-Ghouti, M.A. and Da'ana, D.A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review, J. Hazard. Mater., 393, 122383.
- An, B. and Zhao, D. (2012). Immobilization of As (III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles, J. Hazard. Mater., 211, 332-341. https://doi.org/10.1016/j.jhazmat.2011.10.062
- Aragaw, T.A., Bogale, F.M., and Aragaw, B.A. (2021). Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms, J. Saudi Chem. Soc., 25, 101280.
- Du, X., Han, Q., Li, J. and Li, H. (2017). The behavior of phosphate adsorption and its reactions on the surfaces of Fe-Mn oxide adsorbent, J. Taiwan Inst. Chem., 76, 167-175. https://doi.org/10.1016/j.jtice.2017.04.023
- EPA Region 10 (2007). Advanced treatment to achieve low concentration of phosphorus. 9-11.
- Freundlich, H.M.F. (1906). Over the adsorption in solution, J. Phys. Chem., 57, 385-471.
- Ho, Y.S. and McKay, G. (1998). Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70, 115-124. https://doi.org/10.1016/S0923-0467(98)00076-1
- Hong, H.J., Farooq, W., Yang, J.S. and Yang, J.W. (2010). Preparation and evaluation of Fe-Al binary oxide for arsenic removal: comparative study with single metal oxides, Sep. Sci. Technol., 45, 1975-1981. https://doi.org/10.1080/01496395.2010.493790
- Kaushal, A., and Singh, S.K. (2017). Adsorption phenomenon and its application in removal of lead from wastewater: a review, Int. J. Hydrol., 1(2), 38-47.
- Khan, S.U., Zaidi, R., Shaik, F., Farooqi, I.H., Azam, A., Abuhimd, H. and Ahmed, F. (2021). Evaluation of Fe-Mg binary oxide for As (III) adsorption-synthesis, characterization and kinetic modelling, Nanomater., 11(3), 805.
- Kim, H., He, F. and An, B. (2019). The application of alginate coated iron hydroxide for the removal of Cu(II) and phosphate, Appl. Sci., 9, 3835.
- Kim, T., and An, B. (2021). Effect of hydrogen ion presence in adsorbent and solution to enhance phosphate adsorption,. Appl. Sci., 11(6), 2777.
- Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances, Sven Vetenskapsakad Handingarl., 24(4), 1-39.
- Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403. https://doi.org/10.1021/ja02242a004
- Lim, B. Kim, D. and Yi, T. (2013). Phosphate removal in wastewater by tobermolite, J. Korean Soc. Water Wastewater, 27(6), 455-463.
- MOE. (2018). Wastewater effluent standards up to 20 times stricter. A press release.
- Revellame, E.D., Fortela, D.L., Sharp, W., Hernandez, R. and Zappi, M.E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review, Clean. Eng. Technol., 1, 100032.
- Shin, J., Kang, S. and An, B. (2021). Enhancement of phosphate removal using copper impregnated activated carbon (GAC-Cu), J. Korean Soc. Water Wastewater, 35(6), 455-463. https://doi.org/10.11001/jksww.2021.35.6.455
- Zhang, H., Elskens, M., Chen, G. and Chou, L. (2019). Phosphate adsorption on hydrous ferric oxide (HFO) at different salinities and pHs, Chemosphere, 225, 352-359. https://doi.org/10.1016/j.chemosphere.2019.03.068
- Zhang, G., Wu, Z., Qiu, Q. and Wang, Y. (2021). Efficient sorption of arsenic on nanostructured Fe-Cu binary oxides: influence of structure and crystallinity, Front Chem., 9, 840446.
- Zhang, Y., Yang, M., Dou, X.M., He, H. and Wang, D.S. (2005). Arsenic adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties, Environ. Sci. Technol., 39, 7246-7253. https://doi.org/10.1021/es050775d