DOI QR코드

DOI QR Code

Graphene Reconfigurable Antenna for GPS and Iridium Applications

  • Salem GAHGOUH (Microwave Electronics, Research Laboratory MERLAB FST, Faculty of Sciences, University El Manar) ;
  • Ali GHARSALLAH (Microwave Electronics, Research Laboratory MERLAB FST, Faculty of Sciences, University El Manar)
  • 투고 : 2023.03.05
  • 발행 : 2023.03.30

초록

A frequency reconfigurable antenna based on graphene and used for multi-band wireless communications is presented in this article. The proposed antenna, which consists of two radiating rectangular loops with a graphene extension, is analyzed for Global Positioning System (GPS) and Iridium applications. Its operating frequency is tuned through the implementation of a layer of graphene and thereby adjusting the applied gate bias. Furthermore, the results show a novel use of graphene for microwave frequencies while achieving a frequency reconfiguration with an improvement of the impedance matching and the gain. The results also prove the importance of graphene, with its exceptional properties, for a promising future in nano-electronics.

키워드

참고문헌

  1. Yang, X., Xiao, S., and Wang, B.: Reconfigurable Antennas Compact Multifunctional Antennas for Wireless Systems, pp. 85-116 (2012) 
  2. Balanis, C.A.: Modern antenna handbook, Wiley New York (2008) 
  3. Qin P.Y., Weily, A. R., Guo, Y. J., Bird, T. S., Liang, C.H. : Frequency reconfigurable quasi-Yagi folded dipole antenna, IEEE Trans Antennas Propag, vol. 58, pp. 2742-2747 (2010)  https://doi.org/10.1109/TAP.2010.2050455
  4. Ben Trad, I., Floc'H, J. M., Rmili, H., Drissi, M., Choubani, F.: Rectangular bi-loop single-feed antenna with polarization agility property for GPS and iridium applications, IEEE Transactions on Antennas and Propagation Conference, LAPC 2014, Loughborough, pp. 448-452 (2014) 
  5. Behdad, N., Sarabandi, K.: A varactor-tuned dual-band slot antenna, IEEE Trans Antennas Propag, vol. 54, pp. 401-408 (2006)  https://doi.org/10.1109/TAP.2005.863373
  6. Erdil, E., Topalli, K., Unlu, M., Civi, O. A., Akin, T.: Frequency tunable patch antenna using RF MEMS technology, IEEE Trans Antennas Propag, vol. 55, pp. 1193-1196 (2007)  https://doi.org/10.1109/TAP.2007.893426
  7. Jalali Mazlouman, S., Soleimani, M., Mahanfar, A., Menon, C., Vaughan, R. G.: Pattern reconfigurable square ring patch antenna actuated by hemispherical dielectric elastomer, Electron Lett, vol.47, pp. 164-165 (2011)  https://doi.org/10.1049/el.2010.3585
  8. Dixit, L., Pourush, P. K. S. : Radiation characteristics of switchable ferrite microstrip array antenna, Inst Electr Eng ProcV Microw Antennas Propag, vol.147, pp. 151-155 (2000)  https://doi.org/10.1049/ip-map:20000038
  9. Hu, W., Ismail, M. Y., Cahill, R., Encinar, J. A., Fusco, V., Gamble, H. S., Linton, D. , Dickie, R. , Grant, N., Rea, S. P.: Liquid-crystal-based reflectarray antenna with electronically switchable monopulse patterns, Electron Lett, vol.43 (2007) 
  10. Perruisseau-Carrier, J. , Tamagnone, M., Gomez-Diaz, J. S. , Esquius-Morote, M., Mosig, J. R. : Resonant and leaky-wave reconfigurable antennas based on graphene plasmonics, IEEE Antennas Propag Soc Int Symp, Orlando, pp. 136-137 (2013) 
  11. Geim, G. K., Novoselov, K. S.: The rise of graphene, Nature Mater 6, pp. 183-191 (2007)  https://doi.org/10.1038/nmat1849
  12. Moon, J.S., Seo, H.C., Antcliffe, M., Le, D., McGuire, C., Schmitz, A., Nyakiti, L. O., Gaskill, D. K., Campbell, P. M., Lee, K.M., Asbeck, P.: Graphene FETs for zero-bias linear resistive FET mixers, IEEE Electron Device Lett 34, pp. 465-468 (2013)  https://doi.org/10.1109/LED.2012.2236533
  13. Lin, Y. M., Dimitrakopoulos, C., Jenkins, K.A, Farmer, D.B, Chiu, H.Y., Grill, A., Avouris, P.: 100-GHz transistors from wafer-scale epitaxial graphene, Sci 327, pp. 662 (2010) 
  14. Dubonos, I., Grigorieva, V., Firsov, A. A., Electric field effect in atomically thin carbon films, Science 306, pp. 666-669 (2004)  https://doi.org/10.1126/science.1102896
  15. Ajlani, H., Azizi, M. K., Gharsallah, A., Oueslati, M.: Graphene-GaAs-graphene stacked layers for the improvement of the transmission at the wavelength of 1. 55 ㎛, Optical Materials, vol. 66, pp. 201-206 (2016)  https://doi.org/10.1016/j.optmat.2017.02.016
  16. Bolotin, K. I. , Sikes, K. J, Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene, Solid State Commun, vol. 146, pp. 351-355 (2008)  https://doi.org/10.1016/j.ssc.2008.02.024
  17. Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene, Nat Nanotechnol vol. 3, pp. 491-495 (2009)  https://doi.org/10.1038/nnano.2008.199
  18. Novoselov, S K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A.: Electric Field Effect In Atomically Thin Carbon Films, Science 306, pp. 666 669 (2004) 
  19. Son, Y.W., Cohen, M. L., Louie, S. G.: Energy Gaps In Graphene Nanoribbons, Physical Review Letters, vol. 97 (2006) 
  20. Perruisseau-Carrier, J .: Graphene for Antenna Applications: Opportunities and Challenges from Microwaves to THz, Antennas and Propagation Conference, LAPC 2012, Loughborough (2012) 
  21. Jornet, J. M., Akyildiz, I. F.: Graphene-Based Nano-Antennas for Electromagnetic Nanocommunications in the Terahertz Band, European Conference on Antennas and Propagation, Barcelona (2010) 
  22. LaciK, J., MIKULasEK, T., RAIDA, Z., and al.: Substrate integrated waveguide monopolar ring-slot antenna, Microwave and Optical Technology Letters, vol. 56, no. 8, pp. 1865-1869 (2014) https://doi.org/10.1002/mop.28465