Acknowledgement
This study was supported by the 2023 RDA fellowship program of National Institute of Agricultural Science and was supported by a grant (No. PJ01558102) from the Rural Development Administration, Republic of Korea.
References
- Ahmad SA, Hopkins TL (1993) β-Glucosylation of plant phenolics by phenol β-glucosyltransferase in larval tissues of the tobacco hornworm, Manduca sexta (L.). Insect Biochem Molec Biol 23(5), 581-589. https://doi.org/10.1016/0965-1748(93)90031-M
- Aviles-Pagan EE, Orr-Weaver TL (2018) Activating embryonic development in Drosophila. Semin Cell Dev Biol 84, 100-110. https://doi.org/10.1016/j.semcdb.2018.02.019
- Brackenbury J (1997) Caterpillar kinematics. Nature 390, 453.
- Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3), 443-451. https://doi.org/10.1016/j.cell.2006.04.014
- Carter D, Locke M (1993) Why caterpillars do not grow short and fat. Int J Insect Morphol Embryol 22, 81-102. https://doi.org/10.1016/0020-7322(93)90002-I
- Chowdhary S, Tomer D, Dubal D, Sambre D, Rikhy R (2017) Analysis of mitochondrial organization and function in the Drosophila blastoderm embryo. Sci Rep 7(1), 5502.
- Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47, 93-122. https://doi.org/10.1146/annurev.ento.47.091201.145137
- Gan L, Liu X, Xiang Z, He N (2011) Microarray-based gene expression profiles of silkworm brains. BMC Neurosci 19, 12-18. https://doi.org/10.1186/1471-2202-12-8
- Ghosal G, Lowe J (2015) Collaborative protein filaments. EMBO J 34(18), 2312-2320. https://doi.org/10.15252/embj.201591756
- Hwang JS, Go HJ, Goo TW, Seong SI, Yun EY, Ahn MY, et al. (2007) Molecular characterization of small heat shock protein (hsp20.8A) from the silkworm, Bombyx mori. Int J Indust Entomol 15(1), 75-78.
- Hong SM, Nho SK, Kim NS, Lee JS, Kang SW (2006) Gene expression profiling in the silkworm, Bombyx mori, during early embryonic development. Zoolog Sci 23(6), 517-528. https://doi.org/10.2108/zsj.23.517
- Hopkins TL, Kramer KJ (1992) Insect cuticle sclerotization. Annu Rev Entomol 37, 273-302.
- Kataoka N, Miyake S, Azuma M (2009) Aquaporin and aquaglyceroporin in silkworms, differently expressed in the hindgut and midgut of Bombyx mori. Insect Mol Biol 18(3), 303-314. https://doi.org/10.1111/j.1365-2583.2009.00871.x
- Kostal V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52(2), 113-127.
- Kraft R, Levine RB, Restifo LL (1998) The steroid hormone 20-hydroxyecdysone enhances neurite growth of Drosophila mushroom body neurons isolated during metamorphosis. J Neurosci 18(21), 8886-8899. https://doi.org/10.1523/JNEUROSCI.18-21-08886.1998
- Kramer KJ, Hopkins TL (1987) Tyrosine metabolism for insect cuticle tanning. Arch Insect Biochem Physiol 6, 279-301. https://doi.org/10.1002/arch.940060406
- Li B, Hu P, Zhang SZ, Toufeeq S, Wang J, Zhao K, et al. (2019) DNA methyltransferase BmDnmt1 and BmDnmt2 in silkworm (Bombyx mori) and the regulation of silkworm embryonic development. Arch Insect Biochem Physiol 100(3), e21529.
- Li T, Xia Y, Xu X, Wei G, Wang L (2020) Functional analysis of Dicer-2 gene in Bombyx mori resistance to BmNPV virus. Arch Insect Biochem Physiol 105, e21724.
- Lin HT, Dorfmann AL, Trimmer BA (2009) Soft-cuticle biomechanics: a constitutive model of anisotropy for caterpillar integument. J Theor Biol 256, 447-457. https://doi.org/10.1016/j.jtbi.2008.10.018
- Pappenheimer AM, Williams CM (1954) Cytochrome b5 and the dihydro-coenzyme I-oxidase system in the cecropia silkworm. J Biol Chem 209(2), 915-929.
- Park JW, Yu JH, Kim SB, Kim SW, Kim SR, Choi KH (2019) Analysis of silkworm molecular breeding potential using CRISPR/Cas9 systems for white egg 2 gene. Int J Indust Entomol 39(1), 14-21.
- Pecasse F, Beck Y, Ruiz Y, Richards G (2000) Kruppel-homolog, a stage-specific modulator of the prepupal ecdysone response, is essential for Drosophila metamorphosis. Dev Biol 221(1), 53-67. https://doi.org/10.1006/dbio.2000.9687
- Ponnuvel KM, Murthy GN, Awasthi AK, Rao G, Vijayaprakash NB (2010) Differential gene expression during early embryonic development in diapause and non-diapause eggs of multivoltine silkworm Bombyx mori. Indian J Exp Biol 48(11), 1143-1151.
- Qiao L, Xiong G, Wang RX, He SZ, Chen J, Tong XL, et al. (2014) Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genetics 196(4), 1103-1115. https://doi.org/10.1534/genetics.113.158766
- Sasibhushan S, Rao CGP, Ponnuvel KM (2013) Genome wide microarray based expression profiles during early embryogenesis in diapause induced and non-diapause eggs of polyvoltine silkworm Bombyx mori. Genomics 102(4), 379-387. https://doi.org/10.1016/j.ygeno.2013.07.007
- Teng X, Zhang Z, He G, Yang L, Li F (2012) Validation of reference genes for quantitative expression analysis by real-time rt-PCR in four lepidopteran insects. J Insect Sci 12, 60.
- Xuan N, Rajashekar B, Picimbon JF (2019) DNA and RNA-dependent polymerization in editing of Bombyx chemosensory protein (CSP) gene family. Agri Gene 12, 100087.
- Yoshiga T, Okano K, Mita K, Shimada T, Matsumoto S (2000) cDNA cloning of acyl-CoA desaturase homologs in the silkworm, Bombyx mori. Gene 246(1-2), 339-345. https://doi.org/10.1016/S0378-1119(00)00047-0
- Zhang R, Cao YY, Du J, Thakur K, Tang SM, Hu F, et al. (2021) Transcriptome analysis reveals the gene expression changes in the silkworm (Bombyx mori) in response to hydrogen sulfide exposure. Insects 12(12), 1110.