DOI QR코드

DOI QR Code

Dissolution, crystallilnity, and mechanical properties of silk sericin from Sericinjam silkworm cocoons

  • Yun Yeong Choi (Department of Biofibers and Biomaterials Science, Kyungpook National University) ;
  • Seong Wan Kim (National Institute of Agricultural Sciences, RDA) ;
  • Kee Young Kim (National Institute of Agricultural Sciences, RDA) ;
  • In Chul Um (Department of Biofibers and Biomaterials Science, Kyungpook National University)
  • Received : 2023.02.21
  • Accepted : 2023.03.15
  • Published : 2023.03.31

Abstract

Recently, a silkworm strain (tentatively named Sericinjam) producing 100% sericin cocoons has been studied in South Korea. In this preliminary study, the crystallinity, mechanical properties, and dissolution conditions of sericin from Sericinjam cocoons were examined. The Sericinjam cocoon could be dissolved in water at high temperature (120℃) and high pressure (HTHP method) in an autoclave and in a CaCl2/H2O/EtOH mixture (ternary solvent method), resulting in 82% and 97% dissolution after 30 min, respectively. The solution viscosity of the silk sericin formic acid (SSFA) solution obtained from sericin extracted using the ternary solvent method was higher than that obtained using the HTHP method; however, SSFA solutions obtained from sericin extracted from conventional Baekokjam cocoons yielded a higher solution viscosity. The crystallinity and breaking strength of the sericin film from Sericinjam cocoons were slightly lower, respectively, than those from Baekokjam cocoons. In contrast, the elongation at break of the Sericinjam sericin film obtained using the HTHP method was higher than that of the Baekokjam sericin film.

Keywords

Acknowledgement

This study was performed with the support of the Research Program for Agricultural Science & Technology Development (PJ016130), National Academy of Agricultural Science, Rural Development Administration, Republic of Korea. The authors appreciate the support.

References

  1. Aramwit P, Kanokpanont S, De-Eknamkul W, Srichana T (2009) Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng 107(5), 556-561. https://doi.org/10.1016/j.jbiosc.2008.12.012
  2. Aramwit P, Keongamaroon O, Siritientong T, Bang N, Supasyndh O (2012) Sericin cream reduces pruritus in hemodialysis patients: a randomized, double-blind, placebo-controlled experimental study. BMC Nephrol 13(1), 1-11. https://doi.org/10.1186/1471-2369-13-119
  3. Bae YJ, Noh SK, Um IC (2021) Crystallinity change of silkworm variety cocoons by heat treatment. Int J Indust Entomol 42(1), 7-13.
  4. Bae YJ, Um IC (2020) Effect of addition of methanol on rheological properties of silk formic acid solution. Int J Indust Entomol 40(1), 28-32.
  5. Cho KY, Moon JY, Lee YW, Lee KG, Yeo JH, Kweon HY, et al. (2003) Preparation of self-assembled silk sericin nanoparticles. Int J Biol Macromol 32(1-2), 36-42. https://doi.org/10.1016/S0141-8130(03)00023-0
  6. Choi HJ, Noh SK, Um IC (2020) Morphology, molecular conformation and moisture regain of cocoons of different silkworm varieties. Int J Indust Entomol 40(1), 6-15.
  7. Gulrajani ML, Brahma KP, Kumar PS, Purwar R (2008) Application of silk sericin to polyester fabric. J Appl Polym Sci 109(1), 314-321. https://doi.org/10.1002/app.28061
  8. Jang MJ, Um IC (2017) Effect of sericin concentration and ethanol content on gelation behavior, rheological properties, and sponge characteristics of silk sericin. Eur Polym J 93, 761-774. https://doi.org/10.1016/j.eurpolymj.2017.03.048
  9. Jo YN, Park BD, Um IC (2015) Effect of storage and drying temperature on the gelation behavior and structural characteristics of sericin. Int J Biol Macromol 81, 936-941. https://doi.org/10.1016/j.ijbiomac.2015.09.016
  10. Jo YN, Um IC (2015) Effects of solvent on the solution properties, structural characteristics and properties of silk sericin. Int J Biol Macromol 78, 287-295. https://doi.org/10.1016/j.ijbiomac.2015.04.004
  11. Kim JH, Shin BS, Lee KG, Yeo JH, Kweon HY (2009) Sericinjam Sericin: Structural and Thermal Properties. Int J Indust Entomol 19(2), 255-258.
  12. Kim YE, Bae YJ, Seok YS, Um IC (2022) Effect of hot press time on the structure characteristics and mechanical properties of silk nonwoven fabric. Int J Indust Entomol 44(1), 12-20.
  13. Kweon HY, Yeo JH, Kim KY, Kim YS, Song HS, Kim SJ, et al. (2009) Characteristics of Silk Sericin Extracted from Sericinjam. Int J Indust Entomol 18(2), 121-124.
  14. Lee JH, Park BK, Um IC (2022) Preparation of Highly Crystalline Silk Nanofibrils and Their Use in the Improvement of the Mechanical Properties of Silk Films. Int J Mol Sci 23(19), 11344.
  15. Lee JH, Song DW, Park YH, Um IC (2016) Effect of residual sericin on the structural characteristics and properties of regenerated silk films. Int J Biol Macromol 89, 273-278. https://doi.org/10.1016/j.ijbiomac.2016.04.073
  16. Limpeanchob N, Trisat K, Duangjai A, Tiyaboonchai W, Pongcharoen S, Sutheerawattananonda M (2010) Sericin reduces serum cholesterol in rats and cholesterol uptake into Caco-2 cell. J Agric Food Chem 58, 12519-12522. https://doi.org/10.1021/jf103157w
  17. Marelli B, Alessandrino A, Fare S, Freddi G, Mantovani D, Tanzi MC (2010) Compliant electrospun silk fibroin tubes for small vessel bypass grafting. Acta Biomater 6(10), 4019-4026. https://doi.org/10.1016/j.actbio.2010.05.008
  18. Mase K, Iizuka T, Okada E, Miyajima T, Yamamoto T (2006) A new silkworm race for sericin production,"SERICIN HOPE" and its product, "VIRGIN SERICIN". J Insect Biotechnol Sericology 75(2), 85-88.
  19. Minoura N, Aiba SI, Gotoh Y, Tsukada M, Imai Y (1995) Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res 29(10), 1215-1221. https://doi.org/10.1002/jbm.820291008
  20. Nagai N, Murao T, Ito Y, Okamoto N, Sasaki M (2009) Enhancing effects of sericin on corneal wound healing in Otsuka Long-Evans Tokushima fatty rats as a model of human type 2 diabetes. Biol Pharm Bull 32(9), 1594-1599. https://doi.org/10.1248/bpb.32.1594
  21. Nishida A, Yamada M, Kanazawa T, Takashima Y, Ouchi K, Okada H (2011) Sustained-release of protein from biodegradable sericin film, gel and sponge. Int J Pharm 407(1-2), 44-52. https://doi.org/10.1016/j.ijpharm.2011.01.006
  22. Oh H, Lee JY, Kim A, Ki CS, Kim JW, Park YH, et al. (2007) Preparation of silk sericin beads using LiCl/DMSO solvent and their potential as a drug carrier for oral administration. Fibers Polym 8(5), 470-476. https://doi.org/10.1007/BF02875867
  23. Oh H, Lee JY, Kim MK, Um IC, Lee KH (2011) Refining hot-water extracted silk sericin by ethanol-induced precipitation. Int J Biol Macromol 48(1), 32-37. https://doi.org/10.1016/j.ijbiomac.2010.09.008
  24. Padamwar MN, Pawar AP, Daithankar AV, Mahadik KR (2005) Silk sericin as a moisturizer: an in vivo study. J Cosmet Dermatol 4(4), 250-257. https://doi.org/10.1111/j.1473-2165.2005.00200.x
  25. Park BK, Um IC (2015) Effect of Korean Bombyx mori variety on electro-spinning performance of regenerated silk fibroin. Fibers Polym 16(9), 1935-1940. https://doi.org/10.1007/s12221-015-5472-x
  26. Park CJ, Ryoo J, Ki CS, Kim JW, Kim IS, Bae DG, et al. (2018) Effect of molecular weight on the structure and mechanical properties of silk sericin gel, film, and sponge. Int J Biol Macromol 119, 821-832. https://doi.org/10.1016/j.ijbiomac.2018.08.006
  27. Seo CW, Um IC, Rico CW, Kang MY (2011) Antihyperlipidemic and body fat-lowering effects of silk proteins with different fibroin/sericin compositions in mice fed with high fat diet. J Agric Food Chem 59(8), 4192-4197. https://doi.org/10.1021/jf104812g
  28. Siritientong T, Angspatt A, Ratanavaraporn J, Aramwit P (2014) Clinical potential of a silk sericin-releasing bioactive wound dressing for the treatment of split-thickness skin graft donor sites. Pharm Res 31, 104-116. https://doi.org/10.1007/s11095-013-1136-y
  29. Suzuki N, Fujimura A, Nagai T, Mizumoto I, Itami T, Hatate H, et al. (2004) Antioxidative activity of animal and vegetable dietary fibers. Biofactors 21(1-4), 329-333. https://doi.org/10.1002/biof.552210164
  30. Teramoto H, Kameda T, Tamada Y (2008) Preparation of gel film from Bombyx mori silk sericin and its characterization as a wound dressing. Biosci Biotechnol Biochem 72(12), 3189-3196. https://doi.org/10.1271/bbb.80375
  31. Teramoto H, Nakajima K, Takabayashi C (2005) Preparation of elastic silk sericin hydrogel. Biosci Biotechnol Biochem 69(4), 845-847. https://doi.org/10.1271/bbb.69.845
  32. Uebersax L, Apfel T, Nuss KMR, Vogt R, Kim HY, Meinel L, et al. (2013) Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep. Eur J Pharm Biopharm 85(1), 107-118. https://doi.org/10.1016/j.ejpb.2013.05.008
  33. Um IC, Kweon HY, Lee KG, Park YH (2003) The role of formic acid in solution stability and crystallization of silk protein polymer. Int J Biol Macromol 33(4-5), 203-213. https://doi.org/10.1016/j.ijbiomac.2003.08.004
  34. Um IC, Kweon HY, Park YH, Hudson S (2001) Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol 29(2), 91-97. https://doi.org/10.1016/S0141-8130(01)00159-3
  35. Unger RE, Wolf M, Peters K, Motta A, Migliaresi C, Kirkpatrick CJ (2004) Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering. Biomaterials 25(6), 1069-1075. https://doi.org/10.1016/S0142-9612(03)00619-7
  36. Yang Y, Chen X, Ding F, Zhang P, Liu J, Gu X (2007) Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 28(9), 1643-1652. https://doi.org/10.1016/j.biomaterials.2006.12.004
  37. Zhang X, Khan MMR, Yamamoto T, Tsukada M, Morikawa H (2012) Fabrication of silk sericin nanofibers from a silk sericin-hope cocoon with electrospinning method. Int J Biol Macromol 50(2), 337-347. https://doi.org/10.1016/j.ijbiomac.2011.12.006
  38. Zhang YQ (2002) Applications of natural silk protein sericin in biomaterials. Biotechnol Adv 20(2), 91-100. https://doi.org/10.1016/S0734-9750(02)00003-4