DOI QR코드

DOI QR Code

An Electrostatic Diesel Particulate Filtration System for Removal of Fine Particulate Matters from Marine Diesel Engines

선박 디젤엔진 배출 미세먼지 저감을 위한 정전 여과 매연 집진기 개발에 관한 연구

  • Younghun Kim (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Gunhee Lee (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Kee-Jung Hong (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Yong-Jin Kim (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Hak-Jun Kim (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Inyong Park (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Bangwoo Han (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials)
  • 김영훈 (한국기계연구원 지속가능환경연구실) ;
  • 이건희 (한국기계연구원 지속가능환경연구실) ;
  • 홍기정 (한국기계연구원 지속가능환경연구실) ;
  • 김용진 (한국기계연구원 지속가능환경연구실) ;
  • 김학준 (한국기계연구원 지속가능환경연구실) ;
  • 박인용 (한국기계연구원 지속가능환경연구실) ;
  • 한방우 (한국기계연구원 지속가능환경연구실)
  • Received : 2023.07.19
  • Accepted : 2023.09.14
  • Published : 2023.12.31

Abstract

In order to reduce particulate matters (PM) from marine diesel engines, we developed novel electrostatic diesel particulate matter filtration system. Electrostatic diesel particulate filtration (DPF) system consists of electrostatic charger and filtration part. The electrostatic charger and filtration part are composed of a metal discharge electrode and a metal fiber filter (porosity: 68.1-86.1%), respectively. In the electrostatic charger part, diesel soot particles are reduced by electrostatic force. The filtration part after electrostatic charger part reduces diesel soot particles through inertial and diffusion forces. The filtration efficiency of electrostatic DPF system was examined through the experiments using engine dynamometer system (300 kW) and ship (200 kW). The PM reduction efficiencies due to inertial and electrostatic forces showed about 70-75% and 80-90%, respectively, according to the RPM of the engine. The differential pressure of the electrostatic DPF system applied to the ship was about 1-9 mbar, which was less than the allowable differential pressure for ship engines in South Korea (100 mbar). The results show that the electrostatic DPF system is suitable for application to the PM reduction emitted from ships.

Keywords

Acknowledgement

이 논문은 2023년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20220568, 중소선박 보급형 온실가스 등 저감장치개발).

References

  1. Frank, B., Schuster, M. E., Schlogl, R., and Su, D. S. (2013). Emission aktivierter Russpartikel: die Kehrseite der Medaille moderner Dieselmotoren. Angewandte Chemie, 125(10), 2736-2741. https://doi.org/10.1002/ange.201206093
  2. Ha., S.-Y., and Gug, S. (2020). Improving the Port-Reception-Facility System, Journal of Navigation and Port Research, 44(6), 488-493. https://doi.org/10.5394/KINPR.2020.44.6.488
  3. Hinds, W. C. and Zhu, Y. (2022). Aerosol technology: properties, behavior, and measurement of airborne particles, John Wiley & Sons.
  4. ISO 8178-4 (2007). London, International Organization for Standardization.
  5. Jeong, H., Kim, T., Im, E. , and Lim, D. -H. (2018). Optimum Synthesis Conditions of Coating Slurry for Metallic Structured De-NOx Catalyst by Coating Process on Ship Exhaust Gas, Clean Technology, 24(2), 127-134. https://doi.org/10.7464/ksct.2018.24.2.127
  6. John, W. (1995). Particle-surface interactions: charge transfer, energy loss, resuspension, and deagglomeration, Aerosol science and technology, 23(1), 2-24. https://doi.org/10.1080/02786829508965291
  7. Kim, C., Kim, H., Lee, G., Choi, J., Chon, M., Shin, S. S., and Suh, H. K. (2013). PM Reduction Characteristics of Partial Metal DPF with Screen Mesh Filter Structure, Transactions of KSAE, 21(3), 82-87. https://doi.org/10.7467/KSAE.2013.21.3.082
  8. Kim, S. W., Jung K. S., Kim, H. S. and Choi, J.S. (2014). Prediction of NOx emission for marine diesel engines of existing ship, Journal of Adavanced Marine Engineering and Technology, 38(6), 674-680. https://doi.org/10.5916/jkosme.2014.38.6.674
  9. Lappi, M. K., and Ristimaki, J. M. (2019). Comparison of filter smoke number and elemental carbon from thermal optical analysis of marine diesel engine exhaust, Journal of Engineering for the Maritime Environment, 233(2), 602-609. https://doi.org/10.1177/1475090218776196
  10. Lee, C., and Chang, H. (2019). The Numerical Study on Effect of the Droplet Sizes on Internal Mass Transfer in the Spray Type Scrubber, Clean Technology, 25(1), 19-32. https://doi.org/10.7464/ksct.2019.25.1.019
  11. MARPOL 73/78 (1998), London, International Maritime Organization.
  12. Meij, R., and Te Winkel, B. (2004). The emissions and environmental impact of PM10 and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD, Fuel processing technology, 85(6-7), 641-656. https://doi.org/10.1016/j.fuproc.2003.11.012
  13. Mizuno, A. (2000). Electrostatic precipitation, IEEE Transactions on dielectrics and electrical insulation, 7(5), 615-624. https://doi.org/10.1109/94.879357
  14. Park, J. S., (2021). Trends in development of integrated reduction technology for fine dust emissions from ships, Seoul, Korea Institute of Marine Science & Technology Promotion
  15. Park, N.-K., Kwon, B. C., Lee, S. W., Kang, D., Lee, J. H., Hwang, S. Y., and Seo, M. J. (2020). Research Trend of Hybrid De-NOx Process and Catalytic Filter for Denitrification of Combustion Exhaust Gas, Journal of energy & climate change, 15(1), 48-64. https://doi.org/10.22728/JECC.2020.15.1.048
  16. Ryu, Y. H., Kim, H.Y., Cho, G.B., Kim, H. S. and Nam, J. G. (2015). A study on the installation of SCR system for generator diesel engine of existing ship, Journal of Adavanced Marine Engineering and Technology, 39(4), 412-417. https://doi.org/10.5916/jkosme.2015.39.4.412
  17. Stampfl, A., Maier, M., Radykewicz, R., Reitmeir, P., Gottlicher, M., and Niessner, R. (2011). Langendorff heart: a model system to study cardiovascular effects of engineered nanoparticles, ACS nano, 5(7), 5345-5353. https://doi.org/10.1021/nn200801c
  18. Yang, Z., Zheng, C., Liu, S., Guo, Y., Liang, C., Wang, Y., Hu, D. and Gao, X. (2018). A combined wet electrostatic precipitator for efficiently eliminating fine particle penetration, Fuel Processing Technology, 180, 122-129. https://doi.org/10.1016/j.fuproc.2018.08.013
  19. Zhang, Z., Dong, R., Lan, G., Yuan, T., and Tan, D. (2023). Diesel particulate filter regeneration mechanism of modern automobile engines and methods of reducing PM emissions: A review, Environmental Science and Pollution Research, 30(14), 39338-39376. https://doi.org/10.1007/s11356-023-25579-4