DOI QR코드

DOI QR Code

A Study on the Charpy Impact Performance of Structural Steel Considering the Leakage of Cryogenic Liquefied Gas

극저온 액화가스 누출에 의한 선체 구조용 강재의 샤르피 충격성능에 관한 연구

  • Dong Hyuk Kang (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Jeong-Hyeon Kim (Hydrogen Ship Technology Center, Pusan National University) ;
  • Seul-Kee Kim (Hydrogen Ship Technology Center, Pusan National University) ;
  • Tae-Wook Kim (Hydrogen Ship Technology Center, Pusan National University) ;
  • Doo-Hwan Park (Hydrogen Ship Technology Center, Pusan National University) ;
  • Ki-Beom Park (Hydrogen Ship Technology Center, Pusan National University) ;
  • Jae-Myung Lee (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 강동혁 (부산대학교 조선해양공학과) ;
  • 김정현 (부산대학교 수소선박기술센터) ;
  • 김슬기 (부산대학교 수소선박기술센터) ;
  • 김태욱 (부산대학교 수소선박기술센터) ;
  • 박두환 (부산대학교 수소선박기술센터) ;
  • 박기범 (부산대학교 수소선박기술센터) ;
  • 이제명 (부산대학교 조선해양공학과)
  • Received : 2023.03.09
  • Accepted : 2023.04.03
  • Published : 2023.04.30

Abstract

Environmental regulations are being strengthened worldwide to solve global warming. For this reason, interest in eco-friendly gas fuels such as LNG and hydrogen is continuously increasing. However, when adopting eco-friendly gas fuel, liquefying at a cryogenic temperature is essential to ensure economic feasibility in storage and transportation. Although austenitic stainless steel is typically applied to store cryogenic liquefied gas, structural steel can experience sudden heat shrinkage in the case of leakage in the loading and unloading process of LNG. In severe cases, the phase of the steel may change, so care is required. This study conducted Charpy impact tests on steel material in nine different temperature ranges, from room to cryogenic temperatures, to analyze the effects of cryogenic liquefied gas leaks. As a result of the study, it was not easy to find variations in ductile to brittle transition temperature (DBTT) due to the leakage of cryogenic liquefied gas. Still, the overall impact toughness tended to decrease, and these results were verified through fracture surface analysis. In summary, brittle fracture of the steel plate may occur when a secondary load is applied to steel for hull structural use exposed to a cryogenic environment of -40 ℃ or lower. Therefore, it needs to be considered in the ship design and operating conditions.

Keywords

Acknowledgement

이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임 (20017530). 이 논문은 2022년도 정부(해양수산부)의 재원으로 해양수산과학기술진흥원-해양 부유쓰레기 수거처리용 친환경 선박기술 개발 사업지원을 받아 수행된 연구임(KIMST-20220494).

References

  1. D. H. Lee, S. Park, H. T. Kim, J. D. Kim, J. H. Kim, S. K. Kim, J. K. Seo, P. K. Song, J. E. Oh, B. H. Youn, G. M. Choi, D. H. Lim, and J. M. Lee, "Proposing a new solution for marine debris by utilizing on‑board low‑temperature eco‑friendly pulverization system", Scientific Reports, vol 11, pp. 24364, (2021).
  2. S. K. Kim, J. D. Kim, D. H. Lee, J. H. Kim, J. M. Lee, "Characteristics of pre-strained polyisocyanurate foam: Deformation recovery and compressive mechanical behavior at cryogenic temperature", Journal of Cellular Plastics, vol 58, pp. 357-376, (2022).
  3. T. W. Kim, S. G. Cho, S. S. Kim, J. I. Jhun, H. W. Kim, "A Study on the Evaluation of Structural Safety of Saddle for Bunkering of LNG Fueled Ship", Journal of the Korean Society of Industry Convergence, vol 24, pp. 745-751, (2021).
  4. T. W. Kim, J. W. Oh, Y. K. Seo, S. J. Han, J. M. Lee, "A Study of Mechanical Characteristics at Room/Cryogenic Temperature of Powder Insulation Materials Applied to Type C Fuel Tank", Journal of the Korean Society of Industry Convergence, vol 24, pp. 787-793, (2021).
  5. T. W. Kim, S. K. Kim, S. B. Park, J. M . Lee, "Design of Independent Type-B LNG Fuel Tank: Comparative Study between Finite Element Analysis and International Guidance", Advances in Materials Science and Engineering, vol 2, pp. 1-14, (2018).
  6. T. W. Kim, S. G. Cho, S. H. Park, J. W. Oh, J. H. Lee, S. E. Bae, H. W. Kim, "A Study of Wind/Earthquake Load Analysis for LNG Vent Mast", Journal of the Korean Society of Industry Convergence, vol 23, pp. 343-349, (2020).
  7. J. H. Kim, S. W. Choi, D. H. Park, J. M. Lee, "Charpy impact properties of stainless steel weldment in liquefied natural gas pipelines: Effect of low temperatures", Materials and Design, vol 65, pp. 914-922, (2015). https://doi.org/10.1016/j.matdes.2014.09.085
  8. J. Chen, J. K. Ren, Z. Y. Liu, G. D. Wang, "Interpretation of significant decrease in cryogenic-temperature Charpy impact toughness in a high manganese steel", Materials Science and Engineering: A, vol 737, pp. 158-165, (2018).
  9. M . H. Park, G. W. Park, S. H. Kim, Y. W. Choi, H. C. Kim, S. H. Kwon, S. H. Noh, J. B. Jeon, B. J. Kim, "Tensile and Charpy impact properties of heat-treated high manganese steel at cryogenic temperatures", Journal of Nuclear Materials, vol 570, (2022).
  10. L. T. H. Nguyen, J. S. Hwang, M. S. Kim, J. H. Kim, S. K. Kim, J. M. Lee, "Charpy Impact Properties of Hydrogen-Exposed 316L Stainless Steel at Ambient and Cryogenic Temperatures", Metals, vol 9, pp. 1-14, (2019). https://doi.org/10.3390/met9060625
  11. S. S. Sohn, S. M . Hong, J. H. Lee, B. C. Suh, S. K. Kim, B. J. Lee, N. J. Kim, S. H. Lee, "Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels", Acta Materialia, vol 100, pp. 39-52, (2015) https://doi.org/10.1016/j.actamat.2015.08.027