DOI QR코드

DOI QR Code

Rotator cuff degeneration and healing after rotator cuff repair

  • Stefano Gumina (Department of Anatomy, Histology, Legal Medicine, and Orthopaedics, Sapienza University of Rome) ;
  • Hyungsuk Kim (Department of Orthopedic Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Younsung Jung (Department of Orthopedic Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Hyun Seok Song (Department of Orthopedic Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • Received : 2023.05.30
  • Accepted : 2023.07.10
  • Published : 2023.09.01

Abstract

Rotator cuff tear is a common shoulder injury that compromises both function and quality of life. Despite the prevalence of the injury and advancements in repair techniques, a significant percentage of these repairs fail. This review aims to explore the multifactorial reasons behind this failure, including the degenerative nature of the rotator cuff tendon, inherent and extrinsic factors, and the role of hypoxia in tissue degeneration. Additionally, it elucidates potential strategies for improving healing outcomes.

Keywords

References

  1. Wang PW, Jo CH. Prognostic factors affecting structural integrity after arthroscopic rotator cuff repair: a clinical and histological study. Clin Shoulder Elb 2023;26:10-9.  https://doi.org/10.5397/cise.2022.01137
  2. Kim H, Byun CH, Han SB, Song HS. Surgical treatment outcomes for everted bursal flap of delaminated supraspinatus tear. Orthop J Sports Med 2021;9:2325967121990423. 
  3. Sharma P, Maffulli N. Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am 2005;87:187-202.  https://doi.org/10.2106/JBJS.D.01850
  4. Thankam FG, Dilisio MF, Gross RM, Agrawal DK. Collagen I: a kingpin for rotator cuff tendon pathology. Am J Transl Res 2018;10:3291-309. 
  5. Huijsmans PE, Pritchard MP, Berghs BM, van Rooyen KS, Wallace AL, de Beer JF. Arthroscopic rotator cuff repair with double-row fixation. J Bone Joint Surg Am 2007;89:1248-57.  https://doi.org/10.2106/00004623-200706000-00013
  6. Tashjian RZ, Hollins AM, Kim HM, et al. Factors affecting healing rates after arthroscopic double-row rotator cuff repair. Am J Sports Med 2010;38:2435-42.  https://doi.org/10.1177/0363546510382835
  7. Joo MS, Kim JW. Significant radiologic factors related to clinical outcomes after arthroscopic rotator cuff retear repair. Clin Shoulder Elb 2022;25:173-81.  https://doi.org/10.5397/cise.2022.01046
  8. Iannotti JP, Deutsch A, Green A, et al. Time to failure after rotator cuff repair: a prospective imaging study. J Bone Joint Surg Am 2013;95:965-71.  https://doi.org/10.2106/JBJS.L.00708
  9. Riley GP, Harrall RL, Constant CR, Chard MD, Cawston TE, Hazleman BL. Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis. Ann Rheum Dis 1994;53:359-66.  https://doi.org/10.1136/ard.53.6.359
  10. Gumina S, Di Giorgio G, Bertino A, Della Rocca C, Sardella B, Postacchini F. Inflammatory infiltrate of the edges of a torn rotator cuff. Int Orthop 2006;30:371-4.  https://doi.org/10.1007/s00264-006-0104-0
  11. Lewis JS. Rotator cuff tendinopathy: a model for the continuum of pathology and related management. Br J Sports Med 2010;44:918-23.  https://doi.org/10.1136/bjsm.2008.054817
  12. Maffulli N, Longo UG, Franceschi F, Rabitti C, Denaro V. Movin and Bonar scores assess the same characteristics of tendon histology. Clin Orthop Relat Res 2008;466:1605-11.  https://doi.org/10.1007/s11999-008-0261-0
  13. Sethi PM, Sheth CD, Pauzenberger L, et al. Macroscopic rotator cuff tendinopathy and histopathology do not predict repair outcomes of rotator cuff tears. Am J Sports Med 2018;46:779-85.  https://doi.org/10.1177/0363546517746986
  14. Ferrer GA, Miller RM, Yoshida M, Wang JH, Musahl V, Debski RE. Localized rotator cuff tendon degeneration for cadaveric shoulders with and without tears isolated to the supraspinatus tendon. Clin Anat 2020;33:1007-13.  https://doi.org/10.1002/ca.23526
  15. Gumina S, Carbone S, Campagna V, Candela V, Sacchetti FM, Giannicola G. The impact of aging on rotator cuff tear size. Musculoskelet Surg 2013;97 Suppl 1:69-72.  https://doi.org/10.1007/s12306-013-0263-2
  16. Diebold G, Lam P, Walton J, Murrell GA. Relationship between age and rotator cuff retear: a study of 1,600 consecutive rotator cuff repairs. J Bone Joint Surg Am 2017;99:1198-205.  https://doi.org/10.2106/JBJS.16.00770
  17. Longo UG, Carnevale A, Piergentili I, et al. Retear rates after rotator cuff surgery: a systematic review and meta-analysis. BMC Musculoskelet Disord 2021;22:749. 
  18. Yamamoto A, Takagishi K, Osawa T, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg 2010;19:116-20.  https://doi.org/10.1016/j.jse.2009.04.006
  19. Jeong J, Shin DC, Kim TH, Kim K. Prevalence of asymptomatic rotator cuff tear and their related factors in the Korean population. J Shoulder Elbow Surg 2017;26:30-5.  https://doi.org/10.1016/j.jse.2016.05.003
  20. Gumina S, Candela V, Mariani L, et al. Rotator cuff degeneration of the healthy shoulder in patients with unilateral arm amputation is not worsened by overuse. Knee Surg Sports Traumatol Arthrosc 2018;26:182-7.  https://doi.org/10.1007/s00167-017-4619-2
  21. Sugaya H, Maeda K, Matsuki K, Moriishi J. Repair integrity and functional outcome after arthroscopic double-row rotator cuff repair: a prospective outcome study. J Bone Joint Surg Am 2007;89:953-60.  https://doi.org/10.2106/JBJS.F.00512
  22. Rathbun JB, Macnab I. The microvascular pattern of the rotator cuff. J Bone Joint Surg Br 1970;52:540-53.  https://doi.org/10.1302/0301-620X.52B3.540
  23. Leikina E, Mertts MV, Kuznetsova N, Leikin S. Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci U S A 2002;99:1314-8.  https://doi.org/10.1073/pnas.032307099
  24. Neer CS 2nd. Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Joint Surg Am 1972;54:41-50.  https://doi.org/10.2106/00004623-197254010-00003
  25. Bigliani LU, Levine WN. Subacromial impingement syndrome. J Bone Joint Surg Am 1997;79:1854-68.  https://doi.org/10.2106/00004623-199712000-00012
  26. Oh JH, Kim JY, Lee HK, Choi JA. Classification and clinical significance of acromial spur in rotator cuff tear: heel-type spur and rotator cuff tear. Clin Orthop Relat Res 2010;468:1542-50.  https://doi.org/10.1007/s11999-009-1058-5
  27. Ogawa K, Yoshida A, Inokuchi W, Naniwa T. Acromial spur: relationship to aging and morphologic changes in the rotator cuff. J Shoulder Elbow Surg 2005;14:591-8.  https://doi.org/10.1016/j.jse.2005.03.007
  28. Tucker TJ, Snyder SJ. The keeled acromion: an aggressive acromial variant: a series of 20 patients with associated rotator cuff tears. Arthroscopy 2004;20:744-53.  https://doi.org/10.1016/S0749-8063(04)00603-6
  29. Gumina S, Arceri V, Fagnani C, et al. Subacromial space width: does overuse or genetics play a greater role in determining it?: an MRI study on elderly twins. J Bone Joint Surg Am 2015;97:1647-52.  https://doi.org/10.2106/JBJS.O.00379
  30. Carbone S, Gumina S, Arceri V, Campagna V, Fagnani C, Postacchini F. The impact of preoperative smoking habit on rotator cuff tear: cigarette smoking influences rotator cuff tear sizes. J Shoulder Elbow Surg 2012;21:56-60.  https://doi.org/10.1016/j.jse.2011.01.039
  31. Gumina S, Candela V, Passaretti D, et al. The association between body fat and rotator cuff tear: the influence on rotator cuff tear sizes. J Shoulder Elbow Surg 2014;23:1669-74.  https://doi.org/10.1016/j.jse.2014.03.016
  32. Gumina S, Arceri V, Carbone S, et al. The association between arterial hypertension and rotator cuff tear: the influence on rotator cuff tear sizes. J Shoulder Elbow Surg 2013;22:229-32.  https://doi.org/10.1016/j.jse.2012.05.023
  33. Passaretti D, Candela V, Venditto T, Giannicola G, Gumina S. Association between alcohol consumption and rotator cuff tear. Acta Orthop 2016;87:165-8.  https://doi.org/10.3109/17453674.2015.1119599
  34. Chung SW, Park H, Kwon J, Choe GY, Kim SH, Oh JH. Effect of hypercholesterolemia on fatty infiltration and quality of tendon-to-bone healing in a rabbit model of a chronic rotator cuff tear: electrophysiological, biomechanical, and histological analyses. Am J Sports Med 2016;44:1153-64.  https://doi.org/10.1177/0363546515627816
  35. Garcia GH, Liu JN, Wong A, et al. Hyperlipidemia increases the risk of retear after arthroscopic rotator cuff repair. J Shoulder Elbow Surg 2017;26:2086-90.  https://doi.org/10.1016/j.jse.2017.05.009
  36. Harada N, Gotoh M, Ishitani E, et al. Combination of risk factors affecting retear after arthroscopic rotator cuff repair: a decision tree analysis. J Shoulder Elbow Surg 2021;30:9-15.  https://doi.org/10.1016/j.jse.2020.05.006
  37. Lu X, Sun H, Xu Y, Cao X. The influence of diabetes mellitus on rotator cuff repair: a systematic review and meta-analysis. Comb Chem High Throughput Screen 2021;24:908-20.  https://doi.org/10.2174/1386207323666201020114034
  38. McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med 2018;125:15-24.  https://doi.org/10.1016/j.freeradbiomed.2018.03.042
  39. Thankam FG, Agrawal DK. Hypoxia-driven secretion of extracellular matrix proteins in the exosomes reflects the asymptomatic pathology of rotator cuff tendinopathies. Can J Physiol Pharmacol 2021;99:224-30.  https://doi.org/10.1139/cjpp-2020-0314
  40. Gumina S, Proietti R, Caccavale R, et al. Peripheral microcirculation alteration as cause of posterosuperior rotator cuff tear: the possible indirect contribution of nailfold capillaroscopy. J Shoulder Elbow Surg 2023;32:604-9.  https://doi.org/10.1016/j.jse.2022.08.015
  41. Gumina S, Villani C, Arceri V, et al. Rotator cuff degeneration: the role of genetics. J Bone Joint Surg Am 2019;101:600-5.  https://doi.org/10.2106/JBJS.18.00761
  42. Idolazzi L, Ridolo E, Fassio A, et al. Periostin: the bone and beyond. Eur J Intern Med 2017;38:12-6.  https://doi.org/10.1016/j.ejim.2016.11.015
  43. Gumina S, Leopizzi M, Carnovale M, et al. The attempt of spontaneous repair of rotator cuff tear: the role of periostin. J Orthop 2019;16:400-4.  https://doi.org/10.1016/j.jor.2019.04.018
  44. Gumina S, Natalizi S, Melaragni F, et al. The possible role of the transcription factor nuclear factor-κB on evolution of rotator cuff tear and on mechanisms of cuff tendon healing. J Shoulder Elbow Surg 2013;22:673-80.  https://doi.org/10.1016/j.jse.2012.06.005
  45. Kim H, Park SB, Song HS. A propensity score-matched comparison between knotless layer-by-layer and en masse suture bridge techniques for delaminated rotator cuff tears. Am J Sports Med 2022;50:2219-26.  https://doi.org/10.1177/03635465221093809
  46. Gumina S, Peruzzi B, Leopizzi M, et al. Nuclear lamin A in rotator cuff tear margin tenocytes: an antiapoptotic and cell mechanostat factor. J Orthop Surg Res 2021;16:413. 
  47. Gumina S, Campagna V, Ferrazza G, et al. Use of platelet-leukocyte membrane in arthroscopic repair of large rotator cuff tears: a prospective randomized study. J Bone Joint Surg Am 2012;94:1345-52.  https://doi.org/10.2106/JBJS.K.00394
  48. Jo CH, Shin JS, Park IW, Kim H, Lee SY. Multiple channeling improves the structural integrity of rotator cuff repair. Am J Sports Med 2013;41:2650-7.  https://doi.org/10.1177/0363546513499138
  49. Jo CH, Chai JW, Jeong EC, Oh S, Yoon KS. Intratendinous injection of mesenchymal stem cells for the treatment of rotator cuff disease: a 2-year follow-up study. Arthroscopy 2020;36:971-80.  https://doi.org/10.1016/j.arthro.2019.11.120
  50. Lebaschi A, Kriscenski DE, Tamburini LM, et al. Subacromial bursa increases the failure force in a mouse model of supraspinatus detachment and repair. J Shoulder Elbow Surg 2022;31:e519-33. https://doi.org/10.1016/j.jse.2022.05.009