DOI QR코드

DOI QR Code

Arthroscopic transosseous anchorless rotator cuff repair reduces bone defects related to peri-implant cyst formation: a comparison with conventional suture anchors using propensity score matching

  • Hyeon Jang Jeong (Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Ji Soo Lee (Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Young Kyu Kim (Department of Orthopaedic Surgery, Bundang Jesaeng General Hospital) ;
  • Sung-Min Rhee (Department of Orthopaedic Surgery, Kyung Hee University Medical Center, College of Medicine, Kyung Hee University) ;
  • Joo Han Oh (Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine)
  • 투고 : 2023.01.16
  • 심사 : 2023.05.15
  • 발행 : 2023.09.01

초록

Background: The transosseous anchorless repair (ToR) technique was recently introduced to avoid suture anchor-related problems. While favorable outcomes of the ToR technique have been reported, no previous studies on peri-implant cyst formation with the ToR technique exist. Therefore, this study compared the clinical outcomes and prevalence of peri-implant cyst formation between the ToR technique and the conventional transosseous equivalent technique using suture anchors (SA). Methods: Cases with arthroscopic rotator cuff repair (ARCR) between 2016 and 2018 treated with the double-row suture bridge technique were retrospectively reviewed. Patients were divided into ToR and SA groups. To compare clinical outcomes, 19 ToR and 57 SA cases without intraoperative implant failure were selected using propensity score matching (PSM). While intraoperative implant failure rate was analyzed before PSM, retear rate, peri-implant cyst formation rate, and functional outcomes were compared after PSM. Results: The intraoperative implant failure rate (ToR, 8% vs. SA, 15.3%) and retear rate (ToR, 5.3% vs. SA, 19.3%) did not differ between the two groups (all P>0.05). However, peri-implant cysts were not observed in the ToR group, while they were observed in 16.7% of the SA group (P=0.008). Postoperative functional outcomes were not significantly different between the two groups (all P>0.05). Conclusions: The ToR technique produced comparable clinical outcomes to conventional techniques. Considering the prospect of potential additional surgeries, the absence of peri-implant cyst formation might be an advantage of ToR. Furthermore, ToR might reduce the medical costs related to suture anchors and, thereby, could be a useful option for ARCR. Level of evidence: III.

키워드

참고문헌

  1. Cho CH, Bae KC, Kim DH. Biomaterials used for suture anchors in orthopedic surgery. Clin Orthop Surg 2021;13:287-92. https://doi.org/10.4055/cios20317
  2. Kaar TK, Schenck RC Jr, Wirth MA, Rockwood CA Jr. Complications of metallic suture anchors in shoulder surgery: a report of 8 cases. Arthroscopy 2001;17:31-7. https://doi.org/10.1053/jars.2001.18246
  3. Johnson J, Pinto M, Brabston E, et al. Attitudes and awareness of suture anchor cost: a survey of shoulder surgeons performing rotator cuff repairs. J Shoulder Elbow Surg 2020;29:643-53. https://doi.org/10.1016/j.jse.2019.06.025
  4. Narvy SJ, Didinger TC, Lehoang D, et al. Direct cost analysis of outpatient arthroscopic rotator cuff repair in medicare and non-medicare populations. Orthop J Sports Med 2016;4:2325967116668829.
  5. Kim SH, Oh JH, Lee OS, Lee HR, Hargens AR. Postoperative imaging of bioabsorbable anchors in rotator cuff repair. Am J Sports Med 2014;42:552-7. https://doi.org/10.1177/0363546513517538
  6. Kim SH, Kim DY, Kwon JE, Park JS, Oh JH. Perianchor cyst formation around biocomposite biodegradable suture anchors after rotator cuff repair. Am J Sports Med 2015;43:2907-12. https://doi.org/10.1177/0363546515608484
  7. Kim SH, Yang SH, Rhee SM, Lee KJ, Kim HS, Oh JH. The formation of perianchor fluid associated with various suture anchors used in rotator cuff repair: all-suture, polyetheretherketone, and biocomposite anchors. Bone Joint J 2019;101:1506-11. https://doi.org/10.1302/0301-620X.101B12.BJJ-2019-0462.R2
  8. Kilcoyne KG, Guillaume SG, Hannan CV, Langdale ER, Belkoff SM, Srikumaran U. Anchored transosseous-equivalent versus anchorless transosseous rotator cuff repair: a biomechanical analysis in a cadaveric model. Am J Sports Med 2017;45:2364-71. https://doi.org/10.1177/0363546517706136
  9. Randelli P, Stoppani CA, Zaolino C, Menon A, Randelli F, Cabitza P. Advantages of arthroscopic rotator cuff repair with a transosseous suture technique: a prospective randomized controlled trial. Am J Sports Med 2017;45:2000-9. https://doi.org/10.1177/0363546517695789
  10. Steinitz A, Buxbaumer P, Hackl M, Buess E. Arthroscopic transosseous anchorless rotator cuff repair using the X-box technique. Arthrosc Tech 2019;8:e175-81. https://doi.org/10.1016/j.eats.2018.10.004
  11. Burkhart SS, Diaz Pagan JL, Wirth MA, Athanasiou KA. Cyclic loading of anchor-based rotator cuff repairs: confirmation of the tension overload phenomenon and comparison of suture anchor fixation with transosseous fixation. Arthroscopy 1997;13:720-4. https://doi.org/10.1016/S0749-8063(97)90006-2
  12. Leger St-Jean B, Menard J, Hinse S, Petit Y, Rouleau DM, Beauchamp M. Braided tape suture provides superior bone pull-through strength than wire suture in greater tuberosity of the humerus. J Orthop 2015;12(Suppl 1):S14-7. https://doi.org/10.1016/j.jor.2015.01.025
  13. Oh JH, Song BW, Lee YS. Measurement of volumetric bone mineral density in proximal humerus using quantitative computed tomography in patients with unilateral rotator cuff tear. J Shoulder Elbow Surg 2014;23:993-1002. https://doi.org/10.1016/j.jse.2013.09.024
  14. Oh JH, Song BW, Kim SH, et al. The measurement of bone mineral density of bilateral proximal humeri using DXA in patients with unilateral rotator cuff tear. Osteoporos Int 2014;25:2639-48. https://doi.org/10.1007/s00198-014-2795-1
  15. Jeong HJ, Ahn JM, Oh JH. Trabecular bone score could not predict the bone mineral density of proximal humerus. J Bone Metab 2021;28:239-47. https://doi.org/10.11005/jbm.2021.28.3.239
  16. Waldorff EI, Lindner J, Kijek TG, et al. Bone density of the greater tuberosity is decreased in rotator cuff disease with and without full-thickness tears. J Shoulder Elbow Surg 2011;20:904-8. https://doi.org/10.1016/j.jse.2010.12.009
  17. Haapasalo H, Kannus P, Sievanen H, et al. Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 1998;13:310-9. https://doi.org/10.1359/jbmr.1998.13.2.310
  18. Lill H, Hepp P, Gowin W, et al. Age- and gender-related distribution of bone mineral density and mechanical properties of the proximal humerus. Rofo 2002;174:1544-50. https://doi.org/10.1055/s-2002-35944
  19. Freehill MQ, Harms DJ, Huber SM, Atlihan D, Buss DD. Poly-L-lactic acid tack synovitis after arthroscopic stabilization of the shoulder. Am J Sports Med 2003;31:643-7. https://doi.org/10.1177/03635465030310050201
  20. Oh JH, Kim SH, Lee HK, Jo KH, Bin SW, Gong HS. Moderate preoperative shoulder stiffness does not alter the clinical outcome of rotator cuff repair with arthroscopic release and manipulation. Arthroscopy 2008;24:983-91. https://doi.org/10.1016/j.arthro.2008.06.007
  21. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 1994;(304):78-83.
  22. Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J Shoulder Elbow Surg 1999;8:599-605. https://doi.org/10.1016/S1058-2746(99)90097-6
  23. Sugaya H, Maeda K, Matsuki K, Moriishi J. Functional and structural outcome after arthroscopic full-thickness rotator cuff repair: single-row versus dual-row fixation. Arthroscopy 2005;21:1307-16. https://doi.org/10.1016/j.arthro.2005.08.011
  24. Oh JH, Kim JY, Kim SH, Chung NY. Predictability of early postoperative ultrasonography after arthroscopic rotator cuff repair. Orthopedics 2017;40:e975-81. https://doi.org/10.3928/01477447-20170918-06
  25. Prickett WD, Teefey SA, Galatz LM, Calfee RP, Middleton WD, Yamaguchi K. Accuracy of ultrasound imaging of the rotator cuff in shoulders that are painful postoperatively. J Bone Joint Surg Am 2003;85:1084-9. https://doi.org/10.2106/00004623-200306000-00016
  26. Jeong HJ, Nam KP, Yeo JH, Rhee SM, Oh JH. Retear after arthroscopic rotator cuff repair results in functional outcome deterioration over time. Arthroscopy 2022;38:2399-412. https://doi.org/10.1016/j.arthro.2022.02.016
  27. Ntalos D, Huber G, Sellenschloh K, et al. All-suture anchor pullout results in decreased bone damage and depends on cortical thickness. Knee Surg Sports Traumatol Arthrosc 2021;29:2212-9. https://doi.org/10.1007/s00167-020-06004-6
  28. Barber FA, Herbert MA, Click JN. Suture anchor strength revisited. Arthroscopy 1996;12:32-8. https://doi.org/10.1016/S0749-8063(96)90216-9
  29. Chae SW, Kang JY, Lee J, Han SH, Kim SY. Effect of structural design on the pullout strength of suture anchors for rotator cuff repair. J Orthop Res 2018;36:3318-27. https://doi.org/10.1002/jor.24135
  30. Horoz L, Hapa O, Barber FA, Husemoglu B, Ozkan M, Havitcioglu H. Suture anchor fixation in osteoporotic bone: a biomechanical study in an ovine model. Arthroscopy 2017;33:68-74. https://doi.org/10.1016/j.arthro.2016.05.040
  31. Aziz KT, Shi BY, Okafor LC, Smalley J, Belkoff SM, Srikumaran U. Pullout strength of standard vs. cement-augmented rotator cuff repair anchors in cadaveric bone. Clin Biomech (Bristol, Avon) 2018;54:132-6. https://doi.org/10.1016/j.clinbiomech.2018.03.016
  32. Black EM, Lin A, Srikumaran U, Jain N, Freehill MT. Arthroscopic transosseous rotator cuff repair: technical note, outcomes, and complications. Orthopedics 2015;38:e352-8. https://doi.org/10.3928/01477447-20150504-50
  33. Chillemi C, Mantovani M, Osimani M, Castagna A. Arthroscopic transosseous rotator cuff repair: the eight-shape technique. Eur J Orthop Surg Traumatol 2017;27:399-404. https://doi.org/10.1007/s00590-017-1906-z
  34. Taha ME, Schneider K, Clarke EC, et al. A biomechanical comparison of different suture materials used for arthroscopic shoulder procedures. Arthroscopy 2020;36:708-13. https://doi.org/10.1016/j.arthro.2019.08.048
  35. Giannotti S, Bottai V, Dell'osso G, et al. Disuse osteoporosis of the upper limb: assessment of thirty patients. Clin Cases Miner Bone Metab 2013;10:129-32.
  36. Grover M, Abraham N, Chang YH, Tilburt J. Physician cost consciousness and use of low-value clinical services. J Am Board Fam Med 2016;29:785-92. https://doi.org/10.3122/jabfm.2016.06.160176
  37. Black EM, Higgins LD, Warner JJ. Value-based shoulder surgery: practicing outcomes-driven, cost-conscious care. J Shoulder Elbow Surg 2013;22:1000-9. https://doi.org/10.1016/j.jse.2013.02.008
  38. Jeong HS, Shin JW, Moon SW, Choi JS, Kim H. 2018 Current health expenditures and national health accounts in Korea. Health Policy Manag 2019;29:206-19.
  39. Tashjian RZ, Belisle J, Baran S, et al. Factors influencing direct clinical costs of outpatient arthroscopic rotator cuff repair surgery. J Shoulder Elbow Surg 2018;27:237-41. https://doi.org/10.1016/j.jse.2017.07.011
  40. Black EM, Austin LS, Narzikul A, Seidl AJ, Martens K, Lazarus MD. Comparison of implant cost and surgical time in arthroscopic transosseous and transosseous equivalent rotator cuff repair. J Shoulder Elbow Surg 2016;25:1449-56. https://doi.org/10.1016/j.jse.2016.01.003