DOI QR코드

DOI QR Code

Effects of Magnetite(Fe3O4) as Electrical Conductor of Direct Interspecies Electron Transfer on Methane Yield of Food Wastewater

종간직접전자전달 전도체로서 Magnetite(Fe3O4)가 음폐수의 메탄생산에 미치는 영향

  • Jun-Hyeong Lee (Biogas Research Center, Hankyong National University) ;
  • Tae-Bong Kim (Department of Plant Life & Environmental Science, Hankyong National University) ;
  • Chang-Hyun Kim (School of Animal Life Convergence Science, Hankyong National University) ;
  • Young-Man Yoon (Biogas Research Center, Hankyong National University)
  • 이준형 (한경대학교 바이오가스연구센터) ;
  • 김태봉 (한경대학교 식물생명환경전공) ;
  • 김창현 (한경대학교 동물생명융합학부) ;
  • 윤영만 (한경대학교 바이오가스연구센터)
  • Received : 2022.12.04
  • Accepted : 2022.12.27
  • Published : 2023.03.30

Abstract

Methane production by anaerobic digestion occurs through interspecies electron transfer (DIET), a synthetic metabolism between acetic and methanate bacteria through hydrolysis and acid production steps. In this study, to improve methane yield, the effect of addition of magnetite (Fe3O4), a conductor promoting DIET on methane production in food wastewater was investigated, and the effect on methane yield was assessed by methane potential (Bu) and maximum methane production rate [Rm(t0)] by the operation of batch type anaerobic reactor adding Fe3O4. The Bu and Rm(t0) of food wastewater without Fe3O4 were 0.496 Nm3/kg-VSadded and 38.24 mL/day, respectively. The t0 which reached to Rm appeared at 21.06 days during the operation of the anaerobic reactor. The Bu of food wastewater with Fe3O4 was 0.502, 0.498, 0.512, 0.510, 0.518, 0.523, 0.524, 0.540, and 0.549 Nm3/kg-VSadded in the treatment of 5, 10, 15, 20, 25, 30, 40, 70, and 100mM-Fe3O4, respectively, and the Bu significantly increased to 36.95% with the addition of magnetite in the addition of 15mM-Fe3O4. And, the addition of Fe3O4 shortened the duration to reach Rm from 21.06 days to the maximum of 14.67 days by the addition of Fe3O4. Therefore, the methane yield and production rate of food wastewater significantly improved with the addition of Fe3O4.

혐기소화에 의한 메탄생산은 유기물이 가수분해, 산생성 단계를 거쳐 아세트산생성균과 메탄생성균 간의 영양공생 (syntrophy)에 의해 일어난다. 본 연구에서는 종간 영양공생 기작인 종간직접전자전달 (DIET, Direct Interspecies Electron Transfer) 과정을 촉진시키기 위하여 전도체인 마그네타이트 (Fe3O4) 첨가가 음폐수의 메탄생산에 미치는 영향을 파악하고자 하였다. 이를 위해, 본 연구에서는 회분식 혐기반응기를 이용하여 마그네타이트 투입량에 따른 음폐수의 메탄퍼텐셜 (Bu)과 최대메탄생산속도 [Rm(t0)]를 분석하였다. 마그네타이트 무처리구의 메탄퍼텐셜은 0.496 Nm3/kg-VSadded이었으며, 21.06일에 38.24 mL/day의 최대메탄생산속도를 보였다. 마그네타이트 5, 10, 15, 20, 25, 30, 40, 70, 100mM 처리구의 메탄퍼텐셜은 각각 0.502, 0.498, 0.512, 0.510, 0.518, 0.523, 0.524, 0.540, 0.549 Nm3/kg-VSadded이었으며, 마그네타이트 투입량 증가에 따라 유의성 있는 메탄퍼텐셜의 증가 경향을 보였다. 최대메탄생산속도는 무처리구와 비교하여 마그네타이트 처리구에서 증가하였으며 15mM 처리구에서 36.95%까지 증가하였다. 또한, 마그네타이트 투입농도가 증가함에 따라 최대메탄생산속도에 도달하는 기간(t0)은 무처리 21.06일에서 마그네타이트 100mM 처리 14.67일로 크게 단축되었다. 따라서, 마그네타이트 투입에 따른 음폐수의 메탄퍼텐셜과 최대메탄생산속도가 크게 향상되었다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 및 한국에너지기술평가원 에너지기술개발사업의 지원에 의한 연구임(과제번호: 2021202090056A)

References

  1. ME[Ministry of Environment], "National waste generation and treatment status[2020]". (2021).
  2. ME[Ministry of Environment]. "Status of installation and operation of food waste treatment facilities in 2020". (2021).
  3. KEITI[Korea Environmental Industry and Technology Institute]. "Trends in land treatment of food wastewater". (2016).
  4. Li, L., Xu, Y., Dai, X. and Dai, L., "Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer", Renewable and Sustainable Energy Reviews, 148, p. 111367. (2021).
  5. Akindele, A. A. and Sartaj, M., "The toxicity effects of ammonia on anaerobic digestion of organic fraction of municipal solid waste". Waste management, 71, pp. 757~766. (2018). https://doi.org/10.1016/j.wasman.2017.07.026
  6. Muller, N., Worm, P., Schink, B., Stams, A. J. and Plugge, C. M., "Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms", Environmental microbiology reports, 2(4), pp. 489~499. (2010). https://doi.org/10.1111/j.1758-2229.2010.00147.x
  7. Morita, M., Malvankar, N. S., Franks, A. E., Summers, Z. M., Giloteaux, L., Rotaru, A. E., Rotaru, C. and Lovley, D. R., "Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates", MBio, 2(4), p.e00159-11. (2011).
  8. Rotaru, A.-E., Shrestha, P. M., Liu, F., Markovaite, B., Chen, S., Nevin, K. P. and Lovely, D. R., "Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri", Applied and environmental microbiology, 80(15), pp. 4599~4605. (2014). https://doi.org/10.1128/AEM.00895-14
  9. Baek, G., Kim, J., Kim, J. and Lee, C., "Role and potential of direct interspecies electron transfer in anaerobic digestion", Energies, 11(1), p. 107. (2018).
  10. Tan, J., Wang, J., Xue, J., Liu, S.-Y., Peng, S.-C., Ma, D., Chen, T.-H. and Yue, Z., "Methane producti on and microbial community analysis in the goethite facilitated anaerobic reactors using algal biomass", Fuel, 145, pp. 196~201. (2015). https://doi.org/10.1016/j.fuel.2014.12.087
  11. Wang, T., Zhang, D., Dai, L., Dong, B. and Dai, X., "Magnetite triggering enhanced direct interspecies electron transfer: a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge", Environmental science & technology, 52(12), pp. 7160~7169. (2018). https://doi.org/10.1021/acs.est.8b00891
  12. Kato, S., Hashimoto, K. and Watanabe, K., "Methanogenesis facilitated by electric syntrophy via (semi) conductive iron oxide minerals", Environmental microbiology, 14(7), pp. 1646~1654. (2012). https://doi.org/10.1111/j.1462-2920.2011.02611.x
  13. Zhao, Z., Zhang, Y., Woodard, T., Nevin, K. and Lovley, D., "Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials", Bioresource technology, 191, pp. 140~145. (2015). https://doi.org/10.1016/j.biortech.2015.05.007
  14. Zhuang, L., Tang, J., Wang, Y., Hu, M. and Zhou, S., "Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation", Journal of hazardous materials, 293, pp. 37~45. (2015). https://doi.org/10.1016/j.jhazmat.2015.03.039
  15. Aguilar-Moreno, G. S., Navarro-Ceron, E., Velazquez-Hernandez, A., Hernandez-Eugenio, G., AguilarMendez, M. A. and Espinosa-Solares, T., "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles", Renewable Energy, 147, pp. 204~213. (2020). https://doi.org/10.1016/j.renene.2019.08.111
  16. Altamirano-Corona, M. F., Anaya-Reza, O. and Duran-Moreno, A., "Biostimulation of food waste anaerobic digestion supplemented with granular activated carbon, biochar and magnetite: A comparative analysis", Biomass and Bioenergy, 149, p. 106105. (2021).
  17. Li, D., Song, L., Fang, H., Li, P., Teng, Y., Li, Y.-Y., Liu, R. and Niu, Q., "Accelerated bio-methane production rate in thermophilic digestion of cardboard with appropriate biochar: dose-response kineticassays, hybrid synergistic mechanism, and microbial networks analysis", Bioresource technology, 290, p.121782. (2019).
  18. Yan, W., Zhang, L., Wijaya, S. M. and Zhou, Y., "Unveiling the role of activated carbon on hydrolysis process in anaerobic digestion", Bioresource technology, 296, p. 122366. (2020).
  19. Oh, S.-Y. and Yoon, Y.-M., "Energy recovery efficiency of poultry slaughterhouse sludge cake by hydrothermal carbonization", Energies, 10(11), p. 1876. (2017).
  20. Sorensen, A. H., Winther-Nielsen, M. and Ahring, B. K., "Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors", Applied microbiology and biotechnology, 34(6), pp. 823~827. (1991).
  21. Rice, E., Baird, R., Eaton, A. and Clesceri, L., APHA (American Public Health Association): Standard method for the examination of water and wastewater, Washington DC (US): AWWA (American Water Works Association) and WEF (Water Environment Federation), (2012).
  22. Duncan, D. B., "Multiple range and multiple F tests", Biometrics, 11(1), (1955).
  23. Jing, Y., Wan, J., Angelidaki, I., Zhang, S. and Luo, G., "iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite", Water research, 108, pp. 212~221.
  24. Akturk, A. S. and Demirer, G. N., "Improved food waste stabilization and valorization by anaerobic digestion through supplementation of conductive materials and trace elements", Sustainability, 12(12), p. 5222. (2020).
  25. Zhou, S., Xu, J., Yang, G. and Zhuang, L., "Methano genesis affected by the co-occurrence of iron (III) oxides and humic substances", FEMS Microbiology Ecology, 88(1), pp. 107~120. (2014). https://doi.org/10.1111/1574-6941.12274
  26. Straub, K. L., Benz, M. and Schink, B., "Iron metabolism in anoxic environments at near neutral pH", FEMS microbiology ecology, 34(3), pp. 181~186. (2001). https://doi.org/10.1111/j.1574-6941.2001.tb00768.x
  27. Yin, Q., Miao, J., Li, B. and Wu, G., "Enhancing electron transfer by ferroferric oxide during the anaer obic treatment of synthetic wastewater with mixed organic carbon", International Biodeterioration & Biodegradation, 119, pp. 104~110. (2017). https://doi.org/10.1016/j.ibiod.2016.09.023