Acknowledgement
The research was supported by Scientific Research Project of CICO (No. ZC20210604XBFW000200/01), the Academician Special Science Research Project of CCCC (No. YSZX-03-2020-01-B, and YSZX-03-2021-02-B), the Jiangsu Transportation Science and Technology Project (No. 2020Y19-(1)) and the Fundamental Research Funds for the Central Universities (No. 2242022R10077).
References
- Catbas, N., Gokce, H.B. and Frangopol, D.M. (2013), "Predictive Analysis by Incorporating Uncertainty through a Family of Models Calibrated with Structural Health-Monitoring Data", J. Eng. Mech., 139(6), 712-723. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000342
- Chen, Q., Kruger, U. and Leung, A.Y.T. (2009), "Cointegration testing method for monitoring nonstationary processes", Indust. Eng. Chem. Res., 48(7), 3533-3543. https://doi.org/10.1021/ie801611s
- Chen, Z.W., Xu, Y.L., Xia, Y., Li, Q. and Wong, K.Y. (2011), "Fatigue analysis of long-span suspension bridges under multiple loading: Case study", Eng. Struct., 33(12), 3246-3256. https://doi.org/10.1016/j.engstruct.2011.08.027
- Comanducci, G., Magalhaes, F., Ubertini, F. and Cunha, A. (2016), "On vibration-based damage detection by multivariate statistical techniques: Application to a long-span arch bridge", Struct. Health Monitor., 15(5), 505-524. https://doi.org/10.1177/1475921716650630
- Cross, E.J., Worden, K. and Chen, Q. (2011), "Cointegration: a novel approach for the removal of environmental trends in structural health monitoring data", Proceedings of The Royal Society A-Mathematical Physical and Engineering Sciences, 467(2133), 2712-2732. https://doi.org/10.1098/rspa.2011.0023
- Cui, C.J., Chen, A.R. and Ma, R.J. (2020), "An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment", Int. J. Fatigue, 135(12), 105540. https://doi.org/10.1016/j.ijfatigue.2020.105540
- Dao, P.B. and Staszewski, W.J. (2013), "Cointegration approach for temperature effect compensation in Lamb-wave-based damage detection", Smart Mater. Struct., 22(09), 095002. https://doi.org/10.1088/0964-1726/22/9/095002
- Dao, P.B., Staszewski, W.J. and Klepka, A. (2017) "Stationarity-based approach for the selection of lag length in cointegration analysis used for structural damage detection", Comput.-Aided Civil Infrastr. Eng., 32(2), 138-153. https://doi.org/10.1111/mice.12238
- Deng, Y., Li, A.Q., Chen, S.R. and Feng, D.M. (2018), "Serviceability assessment for long-span suspension bridge based on deflection measurements", Struct. Control Health Monitor, 25(11), e2254. https://doi.org/10.1002/stc.2254
- Dickey, D.A. and Fuller, W.A. (1979), "Distribution of the estimators for autoregressive time series with a unit root", J. Am. Statist. Assoc., 74(366), 427-431. https://doi.org/10.2307/2286348
- Ding, Y.L., Li, A.Q. and Deng, Y. (2010), "Structural Damage Warning of a Long-Span Cable-Stayed Bridge Using Novelty Detection Technique Based on Wavelet Packet Analysis", Adv. Struct. Eng., 13(2), 291-298. https://doi.org/10.1260/1369-4332.13.2.291
- Engle, R.F. and Granger, C.W. (1987), "Cointegration and error correction-representation, estimation, and testing", Econometrica, 55(2), 251-276. https://doi.org/10.2307/1913236
- Fan, Z.Y., Huang, Q., Ren, Y., Zhu Z.Z. and Xu, X. (2020), "A cointegration approach for cable anomaly warning based on structural health monitoring data: An application to cable-stayed bridges", Adv. Struct. Eng., 23(13), 2789-2802. https://doi.org/10.1177/1369433220924793
- Frangopol, D.M., Strauss, A. and Kim, S. (2008), "Use of monitoring extreme data for the performance prediction of structures: General approach", Eng. Struct., 30(12), 3644-3653. https://doi.org/10.1016/j.engstruct.2008.06.010
- He, H.X., Wang, W. and Zhang, X.F. (2019), "Frequency modification of continuous beam bridge based on co-integration analysis considering the effect of temperature and humidity", Struct. Health Monitor., 18(2), 376-389. https://doi.org/10.1177/1475921718755573
- Huang, J.Z., Li, D.S., Li, H.N., Song, G.B. and Liang, Y.B (2018), "Damage identification of a large cable-stayed bridge with novel cointegrated Kalman filter method under changing environments", Struct. Control Health Monitor., 25(5), e2152. https://doi.org/10.1002/stc.2152
- Kaloop, M.R., Hussan, M. and Kim, D. (2019), "Time-series analysis of GPS measurements for long-span bridge movements using wavelet and model prediction techniques", Adv. Space Res., 63(11), 3505-3521. https://doi.org/10.1016/j.asr.2019.02.027
- Kromanis, R. and Kripakaran, P. (2014), "Predicting thermal response of bridges using regression models derived from measurement histories", Comput. Struct., 136, 64-77. https://doi.org/10.1016/j.compstruc.2014.01.026
- Kromanis, R. and Kripakaran, P. (2017), "Data-driven approaches for measurement interpretation: analysing integrated thermal and vehicular response in bridge structural health monitoring", Adv. Eng. Inform., 34, 46-59. https://doi.org/10.1016/j.aei.2017.09.002
- Le, H.V. and Nishio, M. (2019), "Structural change monitoring of a cable-stayed bridge by time-series modeling of the global thermal deformation acquired by GPS", J. Civil Struct. Health Monitor., 9, 689-701. https://doi.org/10.1007/s13349-019-00360-9
- Lepidi, M., Gattulli, V. and Vestroni, F. (2007), "Static and dynamic response of elastic suspended cables with damage", Int. J. Solids Struct., 44(25-26), 8194-8212. https://doi.org/10.1016/j.ijsolstr.2007.06.009
- Lepidi, M. and Gattulli, V. (2012), "Static and dynamic response of elastic suspended cables with thermal effects", International J. Solids Struct., 49(9), 1103-1116. https://doi.org/10.1016/j.ijsolstr.2012.01.008
- Liang, Y.B., Li, D.S., Song, G.B. and Feng, Q. (2018), "Frequency Co-integration-based damage detection for bridges under the influence of environmental temperature variation", Measurement, 125, 163-175. https://doi.org/10.1016/j.measurement.2018.04.034
- Liu, Y.F. and Fan, X.P. (2019), "A data assimilation method about Bayesian Fourier dynamic linear prediction of periodic extreme stresses for steel bridges", Mech. Syst. Signal Process, 128, 82-92. https://doi.org/10.1016/j.ymssp.2019.04.001
- Liu, Y., Deng, Y. and Cai, C.S. (2015), "Deflection monitoring and assessment for a suspension bridge using a connected pipe system: a case study in China", Struct. Control Health Monitor., 22(12), 1408-1425. https://doi.org/10.1002/stc.1751
- Meng, F., Yu, J., Alaluf, D., Mokrani, B. and Preumont, A. (2019), "Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation", Smart Struct. Syst., Int. J., 23(1), 15-29. https://doi.org/10.12989/sss.2019.23.1.015
- Nguyen, L.H. and Goulet, J.A. (2018), "Structural Health Monitoring with dependence on non-harmonic periodic hidden covariates", Eng. Struct., 166, 187-194. https://doi.org/10.1016/j.engstruct.2018.03.080
- Nguyen, D.H., Tran-Ngoc, H., Bui-Tien, T., De Roeck, G. and Wahab, M.A. (2020), "Damage detection in truss bridges using transmissibility and machine learning algorithm: Application to Nam O bridge", Smart Struct. Syst., Int. J., 26(1), 35-47. https://doi.org/10.12989/sss.2020.26.1.035
- Ni, F.T., Zhang, J. and Noori, M.N. (2020), "Deep learning for data anomaly detection and data compression of a long-span suspension bridge", Comput.-Aided Civil Infrastr. Eng., 35(7), 685-700. https://doi.org/10.1111/mice.12528
- Ni, Y.Q., Hua, X.G., Fan, K.Q. and Ko, J.M. (2005), "Correlating modal properties with temperature using long-term monitoring data and support vector machine technique", Eng. Struct., 27(12), 1762-1773. https://doi.org/10.1016/j.engstruct.2005.02.020
- Osarumwense, O.I. and Mbegbu, J.I. (2017), "Power and Size analysis of Co-integration tests in conditional heteroskedascity: a monte carlo simulation", Roman. Statist. Rev., 65(3), 17-34.
- Peeters, B., Maeck, J. and De Roeck, G. (2001), "Vibration-based damage detection in civil engineering: excitation sources and temperature effects", Smart Mater. Struct., 10(3), 518-527. https://doi.org/10.1088/0964-1726/10/3/314
- Posenato, D., Kripakaran, P., Inaudi, D. and Smith, I.F.C. (2010), "Methodologies for model-free data interpretation of civil engineering structures", Comput. Struct., 88(7-8), 467-482. https://doi.org/10.1016/j.compstruc.2010.01.001
- Salawu, O.S. (1997), "Detection of structural damage through changes in frequency: A review", Eng. Struct., 19(09), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
- Shi, H., Worden, K. and Cross, E. J. (2018), "A regime-switching cointegration approach for removing environmental and operational variations in structural health monitoring", Mech. Syst. Signal Process., 103, 381-397. https://doi.org/10.1016/j.ymssp.2017.10.013
- Shin, Y.C. (1994), "A residual-based test of the null of cointegration against the alternative of no cointegration", Economet. Theory, 10(1), 91-115. https://doi.org/10.1017/S0266466600008240
- Sun, B., Xu, Y.L., Wang, F.Y., Li, Z.X. and Zhu, Q. (2019), "Multi-scale fatigue damage prognosis for long-span steel bridges under vehicle loading", Struct. Infrastr. Eng., 15(4), 524-538. https://doi.org/10.1080/15732479.2018.1562478
- Taha, M.M.R., Noureldin, A., Lucero, J.L. and Baca, T.J. (2006), "Wavelet transform for structural health monitoring: A compendium of uses and features", Struct. Health Monitor., 5(3), 267-295. https://doi.org/10.1177/1475921706067741
- Tome, E.S., Pimentel, M. and Figueiras, J. (2018), "Structural response of a concrete cable-stayed bridge under thermal loads", Eng. Struct., 176, 652-672. https://doi.org/10.1016/j.engstruct.2018.09.029
- Tome, E.S., Pimentel, M. and Figueiras, J. (2020), "Damage detection under environmental and operational effects using cointegration analysis - Application to experimental data from a cable-stayed bridge", Mech. Syst. Signal Process., 135, 106386. https://doi.org/10.1016/j.ymssp.2019.106386
- Wan, H.P. and Ni, Y.Q. (2018), "Bayesian modeling approach for forecast of structural stress response using structural health monitoring data", J. Struct. Eng., 144(9), 04018130. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002085
- Wang, F.Y., Xu, Y.L., Sun, B. and Zhu, Q. (2019a), "Dynamic stress analysis for fatigue damage prognosis of long-span bridges", Struct. Infrastr. Eng., 15(5), 582-599. https://doi.org/10.1080/15732479.2019.1569072
- Wang, H., Zhang, Y.M., Mao, J.X., Wan, H.P., Tao, T.Y. and Zhu, Q.X. (2019b), "Modeling and forecasting of temperature-induced strain of a long-span bridge using an improved Bayesian dynamic linear model", Eng. Struct., 192, 220-232. https://doi.org/10.1016/j.engstruct.2019.05.006
- Worden, K., Baldacchino, T., Rowson, J. and Cross, E.J. (2016), "Some recent developments in SHM based on nonstationary time series analysis", Proceedings of the IEEE, 104(8), 1589-1603. https://doi.org/10.1109/JPROC.2016.2573596
- Xin, J.Z., Zhou, J.T., Yang, S.X., Li, X.Q. and Wang, W. (2018), "Bridge structure deformation prediction based on GNSS data using Kalman-ARIMA-GARCH model", Sensors, 18(1), 298. https://doi.org/10.3390/s18010298
- Xu, Y.L. (2018), "Making good use of structural health monitoring systems of long-span cable-supported bridges", Journal of Civil Struct. Health Monitor., 8, 477-497. https://doi.org/10.1007/s13349-018-0279-2
- Xu, X., Huang, Q., Ren, Y., Zhao, D.Y. and Yang, J. (2019a), "Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses", Smart Struct. Syst., Int. J., 23(3), 279-293. https://doi.org/10.12989/sss.2019.23.3.279
- Xu, X., Huang, Q., Ren, Y., Zhao, D.Y., Yang, J. and Zhang D.Y. (2019b), "Modeling and separation of thermal effects from cable-stayed bridge response", J. Bridge Eng., 24(5), 04019028. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001387
- Xu, X., Ren, Y., Huang, Q., Zhao, D.Y., Tong, Z.J. and Chang, W.J. (2020a), "Thermal response separation for bridge long term monitoring systems using multi resolution wavelet based methodologies", J. Civil Struct. Health Monitor., 10, 527-541. https://doi.org/10.1007/s13349-020-00402-7
- Xu, X., Ren, Y., Huang, Q., Fan, Z.Y., Tong, Z.J., Chang, W.J. and Liu, B. (2020b), "Anomaly detection for large span bridges during operational phase using structural health monitoring data", Smart Mater. Struct., 29(4), 045029. https://doi.org/10.1088/1361-665X/ab79b3
- Ye, X.W., Yuan, L., Xi, P.S. and Liu, H. (2018), "SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling", Smart Struct. Syst., Int. J., 21(5), 591-600. https://doi.org/10.12989/sss.2018.21.5.591
- Yarnold, M.T. and Moon, F.L. (2015), "Temperature-based structural health monitoring baseline for long-span bridges", Eng. Struct., 86, 157-167. https://doi.org/10.1016/j.engstruct.2014.12.042
- Zhang, Y., Kim, C.W., Zhang, L., Bai, Y., Yang, H., Xu, X. and Zhang, Z. (2020), "Long term structural health monitoring for old deteriorated bridges: a copula-ARMA approach", Smart Struct. Syst., Int. J., 25(3), 285-299. https://doi.org/10.12989/sss.2020.25.3.285
- Zhou, C., Li, H.N., Li, D.S., Lin, Y.X. and Yi, T.H. (2013), "Online damage detection using pair cointegration method of time-varying displacement", Smart Struct. Syst., Int. J., 12(3-4), 309-325. https://doi.org/10.12989/sss.2013.12.3_4.309
- Zhou, H.F., Ni, Y.Q. and Ko, J.M. (2011), "Structural damage alarming using auto-associative neural network technique: Exploration of environment-tolerant capacity and setup of alarming threshold", Mech. Syst. Signal Process., 25(5), 1508-1526. https://doi.org/10.1016/j.ymssp.2011.01.005
- Zhou, Y., Xia, Y., Chen, B. and Fujino, Y. (2020), "Analytical solution to temperature-induced deformation of suspension bridges", Mech. Syst. Signal Process., 139, 106568. https://doi.org/10.1016/j.ymssp.2019.106568
- Zhu, Y.J., Ni, Y.Q., Jesus, A. Liu, J.L. and Laory, I. (2018), "Thermal strain extraction methodologies for bridge structural condition assessment", Smart Mater. Struct., 27(10), 105051. https://doi.org/10.1088/1361-665X/aad5fb
- Zolna, K., Dao, P.B., Staszewski, W.J. and Barszcz, T. (2016), "Towards homoscedastic nonlinear cointegration for structural health monitoring", Mech. Syst. Signal Process., 75, 94-108. https://doi.org/10.1016/j.ymssp.2015.12.014.