DOI QR코드

DOI QR Code

Cointegration based modeling and anomaly detection approaches using monitoring data of a suspension bridge

  • Ziyuan Fan (School of Transportation, Southeast University) ;
  • Qiao Huang (School of Transportation, Southeast University) ;
  • Yuan Ren (School of Transportation, Southeast University) ;
  • Qiaowei Ye (School of Transportation, Southeast University) ;
  • Weijie Chang (Zhejiang Zhoushan Sea-Crossing Bridge Co., Ltd.) ;
  • Yichao Wang (School of Transportation, Southeast University)
  • 투고 : 2020.12.01
  • 심사 : 2022.04.17
  • 발행 : 2023.02.25

초록

For long-span bridges with a structural health monitoring (SHM) system, environmental temperature-driven responses are proved to be a main component in measurements. However, anomalous structural behavior may be hidden incomplicated recorded data. In order to receive reliable assessment of structural performance, it is important to study therelationship between temperature and monitoring data. This paper presents an application of the cointegration based methodology to detect anomalies that may be masked by temperature effects and then forecast the temperature-induced deflection (TID) of long-span suspension bridges. Firstly, temperature effects on girder deflection are analyzed with fieldmeasured data of a suspension bridge. Subsequently, the cointegration testing procedure is conducted. A threshold-based anomaly detection framework that eliminates the influence of environmental temperature is also proposed. The cointegrated residual series is extracted as the index to monitor anomaly events in bridges. Then, wavelet separation method is used to obtain TIDs from recorded data. Combining cointegration theory with autoregressive moving average (ARMA) model, TIDs for longspan bridges are modeled and forecasted. Finally, in-situ measurements of Xihoumen Bridge are adopted as an example to demonstrate the effectiveness of the cointegration based approach. In conclusion, the proposed method is practical for actual structures which ensures the efficient management and maintenance based on monitoring data.

키워드

과제정보

The research was supported by Scientific Research Project of CICO (No. ZC20210604XBFW000200/01), the Academician Special Science Research Project of CCCC (No. YSZX-03-2020-01-B, and YSZX-03-2021-02-B), the Jiangsu Transportation Science and Technology Project (No. 2020Y19-(1)) and the Fundamental Research Funds for the Central Universities (No. 2242022R10077).

참고문헌

  1. Catbas, N., Gokce, H.B. and Frangopol, D.M. (2013), "Predictive Analysis by Incorporating Uncertainty through a Family of Models Calibrated with Structural Health-Monitoring Data", J. Eng. Mech., 139(6), 712-723. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000342
  2. Chen, Q., Kruger, U. and Leung, A.Y.T. (2009), "Cointegration testing method for monitoring nonstationary processes", Indust. Eng. Chem. Res., 48(7), 3533-3543. https://doi.org/10.1021/ie801611s
  3. Chen, Z.W., Xu, Y.L., Xia, Y., Li, Q. and Wong, K.Y. (2011), "Fatigue analysis of long-span suspension bridges under multiple loading: Case study", Eng. Struct., 33(12), 3246-3256. https://doi.org/10.1016/j.engstruct.2011.08.027
  4. Comanducci, G., Magalhaes, F., Ubertini, F. and Cunha, A. (2016), "On vibration-based damage detection by multivariate statistical techniques: Application to a long-span arch bridge", Struct. Health Monitor., 15(5), 505-524. https://doi.org/10.1177/1475921716650630
  5. Cross, E.J., Worden, K. and Chen, Q. (2011), "Cointegration: a novel approach for the removal of environmental trends in structural health monitoring data", Proceedings of The Royal Society A-Mathematical Physical and Engineering Sciences, 467(2133), 2712-2732. https://doi.org/10.1098/rspa.2011.0023
  6. Cui, C.J., Chen, A.R. and Ma, R.J. (2020), "An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment", Int. J. Fatigue, 135(12), 105540. https://doi.org/10.1016/j.ijfatigue.2020.105540
  7. Dao, P.B. and Staszewski, W.J. (2013), "Cointegration approach for temperature effect compensation in Lamb-wave-based damage detection", Smart Mater. Struct., 22(09), 095002. https://doi.org/10.1088/0964-1726/22/9/095002
  8. Dao, P.B., Staszewski, W.J. and Klepka, A. (2017) "Stationarity-based approach for the selection of lag length in cointegration analysis used for structural damage detection", Comput.-Aided Civil Infrastr. Eng., 32(2), 138-153. https://doi.org/10.1111/mice.12238
  9. Deng, Y., Li, A.Q., Chen, S.R. and Feng, D.M. (2018), "Serviceability assessment for long-span suspension bridge based on deflection measurements", Struct. Control Health Monitor, 25(11), e2254. https://doi.org/10.1002/stc.2254
  10. Dickey, D.A. and Fuller, W.A. (1979), "Distribution of the estimators for autoregressive time series with a unit root", J. Am. Statist. Assoc., 74(366), 427-431. https://doi.org/10.2307/2286348
  11. Ding, Y.L., Li, A.Q. and Deng, Y. (2010), "Structural Damage Warning of a Long-Span Cable-Stayed Bridge Using Novelty Detection Technique Based on Wavelet Packet Analysis", Adv. Struct. Eng., 13(2), 291-298. https://doi.org/10.1260/1369-4332.13.2.291
  12. Engle, R.F. and Granger, C.W. (1987), "Cointegration and error correction-representation, estimation, and testing", Econometrica, 55(2), 251-276. https://doi.org/10.2307/1913236
  13. Fan, Z.Y., Huang, Q., Ren, Y., Zhu Z.Z. and Xu, X. (2020), "A cointegration approach for cable anomaly warning based on structural health monitoring data: An application to cable-stayed bridges", Adv. Struct. Eng., 23(13), 2789-2802. https://doi.org/10.1177/1369433220924793
  14. Frangopol, D.M., Strauss, A. and Kim, S. (2008), "Use of monitoring extreme data for the performance prediction of structures: General approach", Eng. Struct., 30(12), 3644-3653. https://doi.org/10.1016/j.engstruct.2008.06.010
  15. He, H.X., Wang, W. and Zhang, X.F. (2019), "Frequency modification of continuous beam bridge based on co-integration analysis considering the effect of temperature and humidity", Struct. Health Monitor., 18(2), 376-389. https://doi.org/10.1177/1475921718755573
  16. Huang, J.Z., Li, D.S., Li, H.N., Song, G.B. and Liang, Y.B (2018), "Damage identification of a large cable-stayed bridge with novel cointegrated Kalman filter method under changing environments", Struct. Control Health Monitor., 25(5), e2152. https://doi.org/10.1002/stc.2152
  17. Kaloop, M.R., Hussan, M. and Kim, D. (2019), "Time-series analysis of GPS measurements for long-span bridge movements using wavelet and model prediction techniques", Adv. Space Res., 63(11), 3505-3521. https://doi.org/10.1016/j.asr.2019.02.027
  18. Kromanis, R. and Kripakaran, P. (2014), "Predicting thermal response of bridges using regression models derived from measurement histories", Comput. Struct., 136, 64-77. https://doi.org/10.1016/j.compstruc.2014.01.026
  19. Kromanis, R. and Kripakaran, P. (2017), "Data-driven approaches for measurement interpretation: analysing integrated thermal and vehicular response in bridge structural health monitoring", Adv. Eng. Inform., 34, 46-59. https://doi.org/10.1016/j.aei.2017.09.002
  20. Le, H.V. and Nishio, M. (2019), "Structural change monitoring of a cable-stayed bridge by time-series modeling of the global thermal deformation acquired by GPS", J. Civil Struct. Health Monitor., 9, 689-701. https://doi.org/10.1007/s13349-019-00360-9
  21. Lepidi, M., Gattulli, V. and Vestroni, F. (2007), "Static and dynamic response of elastic suspended cables with damage", Int. J. Solids Struct., 44(25-26), 8194-8212. https://doi.org/10.1016/j.ijsolstr.2007.06.009
  22. Lepidi, M. and Gattulli, V. (2012), "Static and dynamic response of elastic suspended cables with thermal effects", International J. Solids Struct., 49(9), 1103-1116. https://doi.org/10.1016/j.ijsolstr.2012.01.008
  23. Liang, Y.B., Li, D.S., Song, G.B. and Feng, Q. (2018), "Frequency Co-integration-based damage detection for bridges under the influence of environmental temperature variation", Measurement, 125, 163-175. https://doi.org/10.1016/j.measurement.2018.04.034
  24. Liu, Y.F. and Fan, X.P. (2019), "A data assimilation method about Bayesian Fourier dynamic linear prediction of periodic extreme stresses for steel bridges", Mech. Syst. Signal Process, 128, 82-92. https://doi.org/10.1016/j.ymssp.2019.04.001
  25. Liu, Y., Deng, Y. and Cai, C.S. (2015), "Deflection monitoring and assessment for a suspension bridge using a connected pipe system: a case study in China", Struct. Control Health Monitor., 22(12), 1408-1425. https://doi.org/10.1002/stc.1751
  26. Meng, F., Yu, J., Alaluf, D., Mokrani, B. and Preumont, A. (2019), "Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation", Smart Struct. Syst., Int. J., 23(1), 15-29. https://doi.org/10.12989/sss.2019.23.1.015
  27. Nguyen, L.H. and Goulet, J.A. (2018), "Structural Health Monitoring with dependence on non-harmonic periodic hidden covariates", Eng. Struct., 166, 187-194. https://doi.org/10.1016/j.engstruct.2018.03.080
  28. Nguyen, D.H., Tran-Ngoc, H., Bui-Tien, T., De Roeck, G. and Wahab, M.A. (2020), "Damage detection in truss bridges using transmissibility and machine learning algorithm: Application to Nam O bridge", Smart Struct. Syst., Int. J., 26(1), 35-47. https://doi.org/10.12989/sss.2020.26.1.035
  29. Ni, F.T., Zhang, J. and Noori, M.N. (2020), "Deep learning for data anomaly detection and data compression of a long-span suspension bridge", Comput.-Aided Civil Infrastr. Eng., 35(7), 685-700. https://doi.org/10.1111/mice.12528
  30. Ni, Y.Q., Hua, X.G., Fan, K.Q. and Ko, J.M. (2005), "Correlating modal properties with temperature using long-term monitoring data and support vector machine technique", Eng. Struct., 27(12), 1762-1773. https://doi.org/10.1016/j.engstruct.2005.02.020
  31. Osarumwense, O.I. and Mbegbu, J.I. (2017), "Power and Size analysis of Co-integration tests in conditional heteroskedascity: a monte carlo simulation", Roman. Statist. Rev., 65(3), 17-34.
  32. Peeters, B., Maeck, J. and De Roeck, G. (2001), "Vibration-based damage detection in civil engineering: excitation sources and temperature effects", Smart Mater. Struct., 10(3), 518-527. https://doi.org/10.1088/0964-1726/10/3/314
  33. Posenato, D., Kripakaran, P., Inaudi, D. and Smith, I.F.C. (2010), "Methodologies for model-free data interpretation of civil engineering structures", Comput. Struct., 88(7-8), 467-482. https://doi.org/10.1016/j.compstruc.2010.01.001
  34. Salawu, O.S. (1997), "Detection of structural damage through changes in frequency: A review", Eng. Struct., 19(09), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
  35. Shi, H., Worden, K. and Cross, E. J. (2018), "A regime-switching cointegration approach for removing environmental and operational variations in structural health monitoring", Mech. Syst. Signal Process., 103, 381-397. https://doi.org/10.1016/j.ymssp.2017.10.013
  36. Shin, Y.C. (1994), "A residual-based test of the null of cointegration against the alternative of no cointegration", Economet. Theory, 10(1), 91-115. https://doi.org/10.1017/S0266466600008240
  37. Sun, B., Xu, Y.L., Wang, F.Y., Li, Z.X. and Zhu, Q. (2019), "Multi-scale fatigue damage prognosis for long-span steel bridges under vehicle loading", Struct. Infrastr. Eng., 15(4), 524-538. https://doi.org/10.1080/15732479.2018.1562478
  38. Taha, M.M.R., Noureldin, A., Lucero, J.L. and Baca, T.J. (2006), "Wavelet transform for structural health monitoring: A compendium of uses and features", Struct. Health Monitor., 5(3), 267-295. https://doi.org/10.1177/1475921706067741
  39. Tome, E.S., Pimentel, M. and Figueiras, J. (2018), "Structural response of a concrete cable-stayed bridge under thermal loads", Eng. Struct., 176, 652-672. https://doi.org/10.1016/j.engstruct.2018.09.029
  40. Tome, E.S., Pimentel, M. and Figueiras, J. (2020), "Damage detection under environmental and operational effects using cointegration analysis - Application to experimental data from a cable-stayed bridge", Mech. Syst. Signal Process., 135, 106386. https://doi.org/10.1016/j.ymssp.2019.106386
  41. Wan, H.P. and Ni, Y.Q. (2018), "Bayesian modeling approach for forecast of structural stress response using structural health monitoring data", J. Struct. Eng., 144(9), 04018130. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002085
  42. Wang, F.Y., Xu, Y.L., Sun, B. and Zhu, Q. (2019a), "Dynamic stress analysis for fatigue damage prognosis of long-span bridges", Struct. Infrastr. Eng., 15(5), 582-599. https://doi.org/10.1080/15732479.2019.1569072
  43. Wang, H., Zhang, Y.M., Mao, J.X., Wan, H.P., Tao, T.Y. and Zhu, Q.X. (2019b), "Modeling and forecasting of temperature-induced strain of a long-span bridge using an improved Bayesian dynamic linear model", Eng. Struct., 192, 220-232. https://doi.org/10.1016/j.engstruct.2019.05.006
  44. Worden, K., Baldacchino, T., Rowson, J. and Cross, E.J. (2016), "Some recent developments in SHM based on nonstationary time series analysis", Proceedings of the IEEE, 104(8), 1589-1603. https://doi.org/10.1109/JPROC.2016.2573596
  45. Xin, J.Z., Zhou, J.T., Yang, S.X., Li, X.Q. and Wang, W. (2018), "Bridge structure deformation prediction based on GNSS data using Kalman-ARIMA-GARCH model", Sensors, 18(1), 298. https://doi.org/10.3390/s18010298
  46. Xu, Y.L. (2018), "Making good use of structural health monitoring systems of long-span cable-supported bridges", Journal of Civil Struct. Health Monitor., 8, 477-497. https://doi.org/10.1007/s13349-018-0279-2
  47. Xu, X., Huang, Q., Ren, Y., Zhao, D.Y. and Yang, J. (2019a), "Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses", Smart Struct. Syst., Int. J., 23(3), 279-293. https://doi.org/10.12989/sss.2019.23.3.279
  48. Xu, X., Huang, Q., Ren, Y., Zhao, D.Y., Yang, J. and Zhang D.Y. (2019b), "Modeling and separation of thermal effects from cable-stayed bridge response", J. Bridge Eng., 24(5), 04019028. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001387
  49. Xu, X., Ren, Y., Huang, Q., Zhao, D.Y., Tong, Z.J. and Chang, W.J. (2020a), "Thermal response separation for bridge long term monitoring systems using multi resolution wavelet based methodologies", J. Civil Struct. Health Monitor., 10, 527-541. https://doi.org/10.1007/s13349-020-00402-7
  50. Xu, X., Ren, Y., Huang, Q., Fan, Z.Y., Tong, Z.J., Chang, W.J. and Liu, B. (2020b), "Anomaly detection for large span bridges during operational phase using structural health monitoring data", Smart Mater. Struct., 29(4), 045029. https://doi.org/10.1088/1361-665X/ab79b3
  51. Ye, X.W., Yuan, L., Xi, P.S. and Liu, H. (2018), "SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling", Smart Struct. Syst., Int. J., 21(5), 591-600. https://doi.org/10.12989/sss.2018.21.5.591
  52. Yarnold, M.T. and Moon, F.L. (2015), "Temperature-based structural health monitoring baseline for long-span bridges", Eng. Struct., 86, 157-167. https://doi.org/10.1016/j.engstruct.2014.12.042
  53. Zhang, Y., Kim, C.W., Zhang, L., Bai, Y., Yang, H., Xu, X. and Zhang, Z. (2020), "Long term structural health monitoring for old deteriorated bridges: a copula-ARMA approach", Smart Struct. Syst., Int. J., 25(3), 285-299. https://doi.org/10.12989/sss.2020.25.3.285
  54. Zhou, C., Li, H.N., Li, D.S., Lin, Y.X. and Yi, T.H. (2013), "Online damage detection using pair cointegration method of time-varying displacement", Smart Struct. Syst., Int. J., 12(3-4), 309-325. https://doi.org/10.12989/sss.2013.12.3_4.309
  55. Zhou, H.F., Ni, Y.Q. and Ko, J.M. (2011), "Structural damage alarming using auto-associative neural network technique: Exploration of environment-tolerant capacity and setup of alarming threshold", Mech. Syst. Signal Process., 25(5), 1508-1526. https://doi.org/10.1016/j.ymssp.2011.01.005
  56. Zhou, Y., Xia, Y., Chen, B. and Fujino, Y. (2020), "Analytical solution to temperature-induced deformation of suspension bridges", Mech. Syst. Signal Process., 139, 106568. https://doi.org/10.1016/j.ymssp.2019.106568
  57. Zhu, Y.J., Ni, Y.Q., Jesus, A. Liu, J.L. and Laory, I. (2018), "Thermal strain extraction methodologies for bridge structural condition assessment", Smart Mater. Struct., 27(10), 105051. https://doi.org/10.1088/1361-665X/aad5fb
  58. Zolna, K., Dao, P.B., Staszewski, W.J. and Barszcz, T. (2016), "Towards homoscedastic nonlinear cointegration for structural health monitoring", Mech. Syst. Signal Process., 75, 94-108. https://doi.org/10.1016/j.ymssp.2015.12.014.