References
- Adali, S. (2009), "Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model", Nano Lett., 9(5), 1737-1741. https://doi.org/10.1021/nl8027087.
- Agrawal, R., Peng, B., Gdoutos, E.E. and Espinosa, H.P. (2008), "Elasticity size effects in ZnO nanowires - a combinding experimental-computational approach", Nano Lett., 8(11), 3668-3674. https://doi.org/10.1021/nl801724b.
- Atalaya, J., Isacsson, A. and Kinaret, J.M. (2008), "Continuum elastic modeling of graphene resonators", Nano Lett., 8(12), 4196-4200. https://doi.org/10.1021/nl801733d.
- Azamat, J. (2021), "Application of graphene, graphene oxide, and boron nitride nanosheets in the water treatment", Membr. Water Treat., 12(5), 227-243. https://doi.org/10.12989/mwt.2021.12.5.227.
- Azandariani, M.G., Gholami, M. and Nikzad A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/anr.2022.12.1.037.
- Balchi, M.N. (2022), "Longitudinal vibration of a nanorod embedded in viscoelastic medium considering nonlocal strain gradient theory", Adv. Nano Res., 13(2), 147-164. https://doi.org/10.12989/anr.2022.13.2.147.
- Braun, T., Barwich, V., Ghatkesar, M.K., Bredekamp, A.H., Gerber, C., Hegner, M. and Lang H.P. (2005), "Micromechanical mass sensors for biomolecular detection in a physiological environment", Phys. Rev. E., 72(3), 031907. https://doi.org/10.1103/PhysRevE.72.031907.
- Cammarata, R.C. (1994), "Surface and interface stress effects in thin films", Prog. Surf. Sci., 46(1), 1-38. https://doi.org/10.1016/0079-6816(94)90005-1.
- Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Groblacher, S., Aspelmeyer, M. and Painter, O. (2011), "Laser cooling of a nanomechanical oscillator into its quantum ground state", Nature, 478(7367), 89-92. https://doi.org/10.1038/nature10461.
- Choi, J.W., Lee, H., Lee, G., Kim, Y.R., Ahn, M.J., Park, H.J., Eom, K., Kwon, T. (2017), "Blood droplet-based cancer diagnosis via proteolytic activity measurement in cancer progression", Theranostics, 7(11), 2878-2887. https://doi.org/10.7150/thno.19358.
- Dai, M. D., Kim, C.-W. and Eom, K. (2011), "Finite size effect on nanomechanical mass detection: The role of surface elasticity", Nanotechnology, 22, 265502. https://doi.org/10.1088/0957-4484/22/26/265502
- Dai, M.D., Kim, C.W. and Eom, K. (2012), "Nonlinear vibration behavior of graphene resonators and their applications in sensitive mass detection", Nanoscale Res. Lett., 7, 499. https://doi.org/10.1186/1556-276X-7-499.
- Dai, M.D. Eom, K. and Kim, C.W. (2009), "Nanomechanical mass detection using nonlinear oscillations", Appl. Phys. Lett., 95(20), 203104. https://doi.org/10.1063/1.3265731.
- Eom, K., Kwon, T.Y., Yoon, D.S., Lee, H.L. and Kim, T.S. (2007), "Dynamical response of nanomechanical resonators to biomolecular interactions", Phys. Rev. B, 76(11), 113408. https://doi.org/10.1103/PhysRevB.76.113408.
- Eom, K., Park, H.S., Yoon, D.S. and Kwon, T. (2011), "Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles", Phys. Rep., 503(4-5), 115-163. https://doi.org/10.1016/j.physrep.2011.03.002.
- Eom, K. (2020), "Computational simulations of nanomechanical resonators for understanding their frequency dynamics and sensing performances", Multiscale Sci. Eng., 2(4), 214-226. https://doi.org/10.1007/s42493-020-00051-4.
- Eringen, A.C. (1983), "On differential equation of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Falk, K., Sedlmeier, F., Joly, L., Netz, R.R. and Bocquet, L. (2010), "Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction", Nano Lett., 10(10), 4067-4073. https://doi.org/10.1021/nl1021046.
- Feng, X., He, R., Yang, P. and Roukes, M.L. (2007), "Very high frequency silicon nanowire electromechanical resonators", Nano Lett., 7(7), 1953-1959. https://doi.org/10.1021/nl0706695.
- Freund, L.B. and Suresh, S. (2003), Thin Film Materials, Cambridge University Press, Cambridge, U.K.
- Gil-Santos, E., Ramos, D., Martinez, J., Fernandez-Regulez, M., Garcia, R., San Paulo, A., Calleja, M. and Tamayo, J. (2010), "Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires", Nat. Nano., 6, 641-645. https://doi.org/10.1038/nnano.2010.151.
- Gupta, A.K., Nair, P.R., Akin, D., Ladisch, M.R., Broyles, S., Alam, M.A. and Bashir, R. (2006), "Anomalous resonance in a nanomechanical biosensor", Proc. Natl. Acad. Sci. U.S.A., 103(36), 13362-13367. https://doi.org/10.1073/pnas.0602022103.
- Gurtin, M.E., Markenscoff, X. and Thurston, R.N. (1976), "Effect of surface stress on the natural frequency of thin crystals", Appl. Phys. Lett., 29(9), 529-530. https://doi.org/10.1063/1.89173.
- Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 57, 291-323. https://doi.org/10.1007/BF00261375.
- Hanay, M.S., Kelber, S., Naik, A.K., Chi, D., Hentz, S., Bullard, E.C., Colinet, E., Duraffourg, L. and Roukes, M.L. (2012), "Single-protein nanomechanical mass spectrometry in real time", Nat. Nano., 7, 602-608. https://doi.org/10.1038/nnano.2012.119.
- He, J. and Lilley, C.M. (2008), "Surface effect on the elastic behavior of static bending nanowires", Nano Lett., 8(7), 1798-1802. https://doi.org/10.1021/nl0733233.
- He, J. and Lilley, C.M. (2008), "Surface stress effect on bending resonance of nanowires with different boundary conditions", Appl. Phys. Lett., 93(26), 263108. https://doi.org/10.1063/1.3050108.
- Hibert, W. (2012), "Mass sensing: Devices reach single-proton limit", Nat. Nano., 7, 278-280. https://doi.org/10.1038/nnano.2012.66.
- Huang, X.M.H., Feng, X.L., Zorman, C.A., Mehregany, M. and Roukes, M.L. (2005), "VHF, UHF, and microwave frequency nanomechanical resonators", N. J. Phys., 7, 247. https://doi.org/10.1088/1367-2630/7/1/247.
- Ibach, H. (1997), "The role of surface stress in reconstruction, epitaxial growth, and stabilization of mesoscopic structures", Surf. Sci. Rep., 29(5-6), 193-263. https://doi.org/10.1016/S0167-5729(97)00010-1.
- Ilic, B., Yang, Y. and Craighead, H.G. (2004), "Virus detection using nanoelectromechanical devices", Appl. Phys. Lett., 85(13), 2604-2606. https://doi.org/10.1063/1.1794378.
- Ilic, B., Yang, Y., Aubin, K., Reichenbach, R., Krylov, S. and Craighead, H.G. (2005), "Enumeration of DNA molecules bound to a nanomechanical oscillator", Nano Lett., 5(5), 925-929. https://doi.org/10.1021/nl050456k.
- Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X. and Yu, D.P. (2006), "Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy", Phys. Rev. B., 73(23), 235409. https://doi.org/10.1103/PhysRevB.73.235409.
- Kim, S.Y. and Park, H.S. (2008), "Utilizing mechanical strain to mitigate the intrinsic loss mechanisms in oscillating metal nanowires", Phys. Rev. Lett., 101, 215502. https://doi.org/10.1103/PhysRevLett.101.215502.
- Kim, S.Y. and Park, H.S. (2009), "The importance of edge effects on the intrinsic loss mechanisms of graphene nanoresonators", Nano Lett., 9(3), 969-974. https://doi.org/10.1021/nl802853e.
- Kim, C.W., Dai, M.D. and Eom, K. (2016), "Finite size effect on the dynamic and sensing performances of graphene resonators: The role of edge stress", Beilstein J. Nanotechnol., 7(1), 685-696. https://doi.org/10.3762/bjnano.7.61.
- Kwon, T., Park, J., Yang, J., Yoon, D.S., Na, S., Kim, C.W., Suh, J.S., Huh, Y.M., Haam, S. and Eom, K. (2009), "Nanomechanical in situ monitoring of proteolysis of peptide by cathepsin B", PLoS ONE, 4(7), e6248. https://doi.org/10.1371/journal.pone.0006248.
- Kwon, T.Y., Eom, K., Park, J.H., Yoon, D.S., Kim, T.S. and Lee, H.L. (2007), "In situ real-time monitoring of biomolecular interactions based on resonating microcantilevers immersed in a viscous fluid", Appl. Phys. Lett., 90(22), 223903. https://doi.org/10.1063/1.2741053.
- LaHaye, M.D., Buu, O., Camarota, B. and Schwab, K.C. (2004), "Approaching the quantum limit of a nanomechanical resonator", Science, 304(5667), 74-77. https://doi.org/10.1126/science.1094419
- Lee, B. and Rudd, R.E. (2007), "First-principles calculation of mechanical properties of Si<001> nanowires and comparison to nanomechanical theory", Phys, Rev. B., 75(19), 195328. https://doi.org/10.1103/PhysRevB.75.195328.
- Lee, C.Y., Choi, W., Han, J.H. and Strano, M.S. (2010), "Coherence resonance in a single-walled carbon nanotube ion channel", Science, 329(5997), 1320-1324. https://doi.org/10.1126/science.1193383.
- Lee, J., Jang, J., Akin, D., Savran, C.A. and Bashir, R. (2008), "Real-time detection of airborne viruses on a mass-sensitive device", Appl. Phys. Lett., 93(1), 013901. https://doi.org/10.1063/1.2956679.
- Lu, P., Lee, H.P., Lu, C. and O'Shea, S.J. (2005), "Surface stress effects on the resonance properties of cantilever sensors", Phys. Rev. B., 72(8), 085405. https://doi.org/10.1103/PhysRevB.72.085405.
- McDowell, M.T., Leach, A.M. and Gall, K. (2008a), "Bending and tensile deformation of metallic nanowires", Model. Simul. Mater. Sci. Eng., 16(4), 045003. https://doi.org/10.1088/0965-0393/16/4/045003.
- McDowell, M.T., Leach, A.M. and Gall, K. (2008b), "On the elastic modulus of metallic nanowires", Nano Lett., 8, 3613-3618. https://doi.org/10.1021/nl801526c
- Meirovitch, L. (1967), Analytical Methods in Vibration, Macmillan, New York, U.S.A.
- Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139-147. https://doi.org/10.1088/0957-4484/11/3/301.
- Park, H.S. (2008), "Surface stress effects on the resonant properties of silicon nanowires", J. Appl. Phys., 103(12), 123504. https://doi.org/10.1063/1.2939576
- Park, H.S., Cai, W., Espinosa, H.D. and Huang, H. (2009), "Mechanics of crystalline nanowires", MRS Bull., 34(3), 178-183. https://doi.org/10.1557/mrs2009.49.
- Park, H.S. and Klein, P.A. (2007), "Surface Cauchy-Born analysis of surface stress effects on metallic nanowires", Phys. Rev. B., 75(8), 085408. https://doi.org/10.1103/PhysRevB.75.085408.
- Park, H.S. and Klein, P.A. (2008), "Surface stress effects on the resonant properties of metal nanowires: The importance of finite deformation kinematics and the impact of the residual surface stress", J. Mech. Phys. Solids, 56(11), 3144-3166. https://doi.org/10.1016/j.jmps.2008.08.003.
- Pin, L., Lee, H.P., Lu, C. and Zhang, P.Q. (2006), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99(7), 073510. https://doi.org/10.1063/1.2189213.
- Poot, M. and van der Zant, H.S.J. (2012), "Mechanical systems in the quantum regime", Phys. Rep., 511, 273-335. https://doi.org/10.1016/j.physrep.2011.12.004
- Postma, H.W.C., Kozinsky, I., Husain, A. and Roukes, M.L. (2005), "Dynamic range of nanotube- and nanowire-based electromechanical systems", Appl. Phys. Lett., 86, 223105.
- Rayleigh, L. (1890), "On the theory of surface forces", Phil. Mag., 30, 285-298. https://doi.org/10.1080/14786449008620028
- Sharma, P., Ganti, S. and Bhate, N. (2003), "Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities", Appl. Phys. Lett., 82(4), 535-537. https://doi.org/10.1063/1.1539929.
- Shuttleworth, R. (1950), "The surface tension of solids", Proc. Phys. Soc. Lond. Sect. A., 63(5), 444-457. https://doi.org/10.1088/0370-1298/63/5/302.
- Tamayo, J., Ramos, D., Mertens, J. and Calleja, M. (2006), "Effect of the adsorbate stiffness on the resonance response of microcantilever sensors", Appl. Phys. Lett., 89(22), 224104. https://doi.org/10.1063/1.2388925.
- Timoshenko, S. (1940), Theory of Plates and Shells, McGrow Hill, New York, U.S.A.
- Timoshenko, S. and Goodier, J.N. (1970), Theory of Elasticity, McGraw Hill, New York, U.S.A.
- Verbridge, S.S., Shapiro, D.F., Craighead, H.G. and Parpia, J.M. (2007), "Macroscopic tuning of nanomechanics: Substrate bending for reversible control of frequency and quality factor of nanostring resonators", Nano Lett., 7(6), 1728-1735. https://doi.org/10.1021/nl070716t.
- Waggoner, P.S. and Craighead, H.G. (2007), "Micro- and nanomechanical sensors for environmental, chemical, and biological detection", Lab Chip, 7(10), 1238-1255. https://doi.org/10.1039/B707401H.
- Wang, G.F. and Feng, X.Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94(14), 141913. https://doi.org/10.1063/1.3117505.
- Wu, G., Datar, R.H., Hansen, K.M., Thundat, T., Cote, R.J. and Majumdar, A. (2001), "Bioassay of prostate-specific antigen (PSA) using microcantilevers", Nat. Biotech., 19(9), 856-860. https://doi.org/10.1038/nbt0901-856.
- Wu, B., Heidelberg, A. and Boland, J.J. (2005), "Mechanical properties of ultrahigh-strength gold nanowires", Nat. Mater., 4(7), 525-529. https://doi.org/10.1038/nmat1403.
- Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L. and Roukes, M.L. (2006), "Zeptogram-scale nanomechanical mass sensing", Nano Lett., 6(4), 583-586. https://doi.org/10.1021/nl052134m.
- Yi, W. (2022), "Intelligent computer modelling and simulation for the large amplitude of nano systems", Adv. Nano Res., 13(1), 63-75.
- Yoon, G., Park, H.J., Na, S. and Eom, K. (2009), "Mesoscopic model for mechanical characterization of biological protein materials", J. Comput. Chem., 30(6), 873-880. https://doi.org/10.1002/jcc.21107.
- Yun, G. and Park, H.S. (2009), "Surface stress effects on the bending properties of fcc metal nanowires", Phys. Rev. B., 79(19), 195421. https://doi.org/10.1103/PhysRevB.79.195421.
- Zhao, Y., Ma, C.C., Chen, G. and Jiang, Q. (2003), "Energy dissipation mechanisms in carbon nanotube oscillators", Phys. Rev. Lett., 91(17), 175504. https://doi.org/10.1103/PhysRevLett.91.175504.
- Zheng, M., Eom, K. and Ke, C. (2009), "Calculation of the resonant response of carbon nanotubes to binding of DNA", J. Phys. D Appl. Phys., 42(14), 145408. https://doi.org/10.1088/0022-3727/42/14/145408.
- Zhu, Y., Xu, F., Qin, Q., Fung, W.Y. and Lu, W. (2009), "Mechanical properties of vapor-liquid-solid synthesized silicon nanowires", Nano Lett., 9(11), 3934-3939. https://doi.org/10.1021/nl902132w.