DOI QR코드

DOI QR Code

Stability improvement for response attenuation of bridge columns with one dimensional meta-material based isolation systems

  • Saumitra Jain (Department of Civil Engineering, Indian Institute of Technology Bombay) ;
  • Sumiran Pujari (Department of Physics, Indian Institute of Technology Bombay) ;
  • Arghadeep Laskar (Department of Civil Engineering, Indian Institute of Technology Bombay)
  • 투고 : 2022.11.15
  • 심사 : 2023.02.27
  • 발행 : 2023.03.25

초록

The concept of meta-material-based isolation systems (MMIS) for structural columns has been revisited in the present study in order to enhance the stability of rubber pads by using steel shim reinforced rubber (SSRR) layers. Analytical calculations have shown a significant improvement in the stability of MMIS with SSRR pads. Finite element analysis has also been conducted to further show the reduced response of a bridge with the modified MMIS under excitations having frequencies within the corresponding attenuation zone (AZ) as compared to the response of a conventional bridge without MMIS. FE analysis further shows the stress generated on the bridge with MMIS systems are within safe limits. Finally, a generalized procedure has been developed to design bridge columns with the proposed modified MMIS.

키워드

과제정보

This work was supported through the Industrial Research and Consultancy Center of IIT Bombay (Sanction No. 17IRCCSG011) and Science and Engineering Research Board (SERB) (Sanction Nos. CRG/2019/000390 and SRG/2019/001419), under the Department of Science and Technology (DST), Government of India.

참고문헌

  1. Asiri, S.A., Mohammad, A.S. and Al-Ghamdi, A.S. (2009), "Dynamic Response of an experimental model for offshore platforms with periodic legs", J. King Abdul-Aziz Univ. Eng. Sci., 20(1), 93-121. https://doi.org/10.4197/Eng.20-1.6
  2. Buckle, I., Nagarajaiah S., and Ferrell, K. (2002), "Stability of elastomeric isolation bearings: Experimental study", J. Struct. Eng. ASCE, 128(1), 3-11. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(3).
  3. Cardone, D., Dolce, M. and Palermo, G. (2009), "Direct displacement-based design of seismically isolated bridges", Bull. Earthq. Eng., 7, 391. https://doi.org/10.1007/s10518-008-9069-2.
  4. Casablanca, O., Ventura, G., Garesci, F., Azzerboni, B., Chiaia, B., Chiappini, M. and Finocchio, G. (2018), "Seismic isolation of buildings using composite foundations based on metamaterials", J. Appl. Phys., 123,174903. https://doi.org/10.1063/1.5018005.
  5. Cheng, Z. and Shi, Z. (2014), "Vibration attenuation properties of periodic rubber concrete panels", Constr. Build. Mater., 50, 257-265. https://doi.org/10.1016/j.conbuildmat.2013.09.060.
  6. EN 1337-3-2005 (2005), Structural Bearings-Part 3 Elastomeric Bearing, European Committee for Standardization, Brussels, Belgium.
  7. Ghasemi, M.A., Khodadadi, R. and Banaei, H.A. (2012), "Design and simulation of all optical multiplexer based on onedimensional photonic crystal for optical communications systems", Int. J. Eng. Res. Appl., 2(6), 960-968.
  8. He, W., Jiang, L., Wei, B. and Wang, Z. (2020), "The influence of pier height on the seismic isolation effectiveness of friction pendulum bearing for Double-Track railway bridges", Struct., 28, 1870-1884. https://doi.org/10.1016/j.istruc.2020.10.0222.
  9. Huang, H.W., Wang, J., Zhao, C. and Mo, Y.L. (2021), "Twodimensional finite-element simulation of periodic barriers", J. Eng. Mech., 147(2), 04020150.
  10. Hussein, M.I., Hulbert, G.M. and Scott, R.A. (2007), "Dispersive Elastodynamics of 1D banded materials and structures", J. Sound Vib., 307(3), 865-893. https://doi.org/10.1016/j.jsv.2007.07.021
  11. IRC-21 (2000), Standards Specifications and Code of Practice for Road Bridges, Section -III, Cement Concrete (Plain and Reinforced), Indian Road Congress, New Delhi, India.
  12. IRC-6 (2014), Standards Specifications and Code of Practice for Road Bridges, Section -II, Loads and Stresses, Indian Road Congress, New Delhi, India.
  13. Jain, S., Pujari, S. and Laskar, A. (2021), "Investigation of onedimensional multi-layer periodic unit cell for structural base isolation", Struct., 34, 2151-2163. https://doi.org/10.1016/j.istruc.2021.08.093.
  14. Jain, S., Shaik, A., Laskar, A. and Alam, A. (2019), "Application of innovative one-dimensional periodic isolation systems for seismic response reduction of bridges", Adv. Struct. Eng., 23(7), 1397-1412. https://doi.org/10.1177/1369433219895918.
  15. Jiang, H., Cai, Z., Yuan, L., Ma, T., Du, J. and Wang, J. (2021), "SH wave propagation in a periodic cement-based piezoelectric layered barrier", Mech. Adv. Mater. Struct., 29(26), 4902-4910. https://doi.org/10.1080/15376494.2021.1942598.
  16. Joe, Y.S., Essiben, J.F.D. and Hedin, E.R. (2013), "Surface-wave suppression using periodic structures", Int. J. Eng. Res. Appl., 3(2), 1562-1566.
  17. Kelly, J.M. (1997), Earthquake Resistant Design with Rubber, Springer London, London, UK.
  18. Kittel, C. (2005), Introduction to Solid State Physics, 8 th Edition, John Wiley&Sons, Hoboken, NJ, USA.
  19. Ling, T.C. (2011), "Prediction of density and compressive strength for rubberized concrete blocks", Constr. Build. Mater., 25, 4303-4306. https://doi.org/10.1016/j.conbuildmat.2011.04.074.
  20. Liu, X., Shi, Z., Mo, Y.L. and Cheng, Z. (2016), "Effect of initial stress on attenuation zones of layered periodic foundations", Eng. Struct., 121, 75-84 http://doi.org/10.1016/j.engstruct.2016.04.049.
  21. Liu, X., Wang, Y. and Chen, Y. (2019), "Attenuation zones of two-dimensional periodic foundation including the effect of vertical loads", Appl. Sci., 9, 993-1005. https://doi.org/10.3390/app9050993.
  22. Liu, Z., Zhang, X., Mao, Y., Zhu, Y., Yang, Z., Chan, C.T. and Sheng, P. (2000), "Locally resonant sonic materials", Sci., 289, 1734-1736. https://doi.org/10.1126/science.289.5485.1734.
  23. Maldovan, M. (2013), "Sound and heat revolutions in phononics", Nat., 503, 209-217. https://doi.org/10.1038/nature12608.
  24. Maldovan, M. (2015), "Phonon wave interference and thermal bandgap materials", Nat. Mater., 14(7), 667-674. https://doi.org/10.1038/nmat4308.
  25. Mester, S.S. and Benaroya, H. (1995), "Periodic and near periodic structures", Shock Vib., 2, 69-95. https://doi.org/10.3233/SAV1995-2107.
  26. Nath, R.J., Deb, S.K. and Datta, A. (2013), "Base isolated RC building - Performance evaluation and numerical model updating using recorded earthquake response", Earthq. Struct., 4(5), 471-487. https://doi.org/10.12989/eas.2013.4.5.471.
  27. Thomas, E.L., Gorishny, T. and Maldovan, M. (2006), "Phononics colloidal crystals go hypersonic", Nat. Mater., 5, 773-774. https://doi.org/10.1038/nmat1744.
  28. Tornello, M.E. and Sarrazin, M. (2012), "Base isolated building with high damping spring system subjected to near fault earthquakes", Earthq. Struct., 3(3), 315-340, https://doi.org/10.12989/eas.2012.3.315.
  29. Torres, M. and de Espinosa, F.R.M (2004), "Ultrasonic band gaps and negative refraction", Ultrason., 42(1-9), 787-790. https://doi.org/10.1016/j.ultras.2004.01.041.
  30. Witarto, W., Wang, .SJ., Yang, C.Y., Wang, J., Mo, Y.L., Chang, K.C. and Tang, Yu. (2019), "Three-dimensional periodic materials as seismic base isolator for nuclear infrastructure", AIP Adv., 9(4), 045014. https://doi.org/10.1063/1.5088609.
  31. Witarto, W., Wang, S.J., Xin, N., Mo, Y.L., Shi, Z., Tang, Y. and Kassawara, R.P. (2016), "Analysis and design of one dimensional periodic foundation for seismic base isolation of structures", Int. J. Eng. Res. Appl., 6(1), 05-15.
  32. Xiang, H.J., Shi, Z.F., Wang, S.J. and Mo, Y.L. (2012), "Periodic materials-based vibration attenuation in layered foundations: Experimental validation", Smart Mater. Struct., 21(11), 112003. https://doi.org/10.1088/0964-1726/21/11/112003.
  33. Xiao, W., Zeng, G.W. and Cheng, Y.S. (2008), "Flexural vibration band gaps in a thin plate containing a periodic array of hemmed discs", Appl. Acoustics, 69(3), 255-261. https://doi.org/10.1016/j.apacoust.2006.09.003.
  34. Xiong, C., Shi, Z. and Xiang, H. (2012), "Attenuation of building vibration using periodic foundations", Adv. Struct. Eng., 15(8), 1375-1388. https://doi.org/10.1260/1369-4332.15.8.1375
  35. Zeng, S.H. and Yuan, Y. (2008), "Experimental investigation on dynamic properties of rubberized concrete", Constr. Build. Mater., 22, 939-947. https://doi.org/10.1016/j.apacoust.2006.09.003.
  36. Zhao, C., Zeng, C., Witarto, W., Huang, H.W., Dai, J. and Mo, Y. L. (2021), "Isolation performance of a small modular reactor using 1D periodic foundation", Eng. Struct., 244, 112825 https://doi.org/10.1016/j.engstruct.2021.112825.