DOI QR코드

DOI QR Code

Comparing type-1, interval and general type-2 fuzzy approach for dealing with uncertainties in active control

  • 투고 : 2022.06.16
  • 심사 : 2022.09.29
  • 발행 : 2023.02.25

초록

Nowadays fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages. Generalized type-2 fuzzy sets allow for a third dimension to capture higher order uncertainty and therefore offer a very powerful model for uncertainty handling in real world applications. With the recent advances that allowed the performance of general type-2 fuzzy logic controllers to increase, it is now expected to see the widespread of type-2 fuzzy logic controllers to many challenging applications in particular in problems of structural control, that is the case study in this paper. It should be highlighted that this is the first application of general type-2 fuzzy approach in civil structures. In the following, general type-2 fuzzy logic controller (GT2FLC) will be used for active control of a 9-story nonlinear benchmark building. The design of type-1 and interval type-2 fuzzy logic controllers is also considered for the purpose of comparison with the GT2FLC. The performance of the controller is validated through the computer simulation on MATLAB. It is demonstrated that extra design degrees of freedom achieved by GT2FLC, allow a greater potential to better model and handle the uncertainties involved in the nature of earthquakes and control systems. GT2FLC outperforms successfully a control system that uses T1 and IT2 FLCs.

키워드

참고문헌

  1. Al-Ghazali, A.S. and Shariatmadar, H. (2021), "Hybrid active control of adjacent buildings interconnected by viscous dampers utilizing type-2 fuzzy controller considering soil-structure interaction", Structures, 33, 292-306. https://doi.org/10.1016/j.istruc.2021.03.117
  2. Azadvar, M., Hajkazemi, H. and Karamoddin, A. (2018), "Structural damage control with interval type-2 fuzzy logic controller", AUT J. Civil Eng., 2(2), 125-134. https://dx.doi.org/10.22060/ajce.2018.13827.5255
  3. Bathaei, A., Zahrai, S.M. and Ramezani, M. (2018), "Semi-active seismic control of an 11-DOF building model with TMD+ MR damper using type-1 and-2 fuzzy algorithm", J. Vib. Control, 24(13), 2938-2953. https://doi.org/10.1177/1077546317696369
  4. Bernal, E., Lagunes, M.L., Castillo, O., Soria, J. and Valdez, F. (2021), "Optimization of type-2 fuzzy logic controller design using the GSO and FA algorithms", Int. J. Fuzzy Syst., 23(1), 42-57. https://doi.org/10.1007/s40815-020-00976-w
  5. Bozorgvar, M. and Zahrai, S.M. (2019), "Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution", Smart Struct. Syst., Int. J., 23(1), 1-14. https://doi.org/10.12989/sss.2019.23.1.001
  6. Braz-Cesar, M.T. and Barros, R.C. (2018), "Semi-active fuzzy based control system for vibration reduction of a SDOF structure under seismic excitation", Smart Struct. Syst., Int. J., 21(4), 389-395. https://doi.org/10.12989/sss.2018.21.4.389
  7. Castillo, O., Amador-Angulo, L., Castro, J.R. and Garcia-Valdez, M., (2016), "A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems", Inform. Sci., 354, 257-274. https://doi.org/10.1016/j.ins.2016.03.026
  8. Cuevas, F., Castillo, O. and Cortes, P. (2022), "Optimal setting of membership functions for interval type-2 fuzzy tracking controllers using a shark smell metaheuristic algorithm", Int. J. Fuzzy Syst., 24(2), 799-822. https://doi.org/10.1007/s40815-021-01136-4
  9. Golnargesi, S., Shariatmadar, H. and Razavi, H.M. (2018), "Seismic control of buildings with active tuned mass damper through interval type-2 fuzzy logic controller including soil-structure interaction", Asian J. Civil Eng., 19(2), 177-188. https://doi.org/10.1007/s42107-018-0016-5
  10. Hagras, H. (2007), "Type-2 FLCs: A New Generation of Fuzzy Controllers", Computat. Intell. Magaz., 2(1), 30-43. https://doi.org/10.1109/MCI.2007.357192
  11. Hosseini Lavassani, S.H. and Shangapour, S. (2022), "Interval Type-2 Fuzzy Hybrid Control of a High-Rise Building Including Soil-Structure Interaction Under Near-Field and FarField Ground Motions", Struct. Eng. Int., 32(3), 316-327. https://doi.org/10.1080/10168664.2020.1838249
  12. John, R. and Coupland, S. (2007), "Type-2 fuzzy logic: A historical view", IEEE Computat. Intell. Magaz., 2(1), 57-62. https://doi.org/10.1109/MCI.2007.357194
  13. Karnik, N.N. and Mendel J.M. (2001), "Centroid of a type-2 fuzzy set", Inform. Sci., 132(1-4), 195-220. https://doi.org/10.1016/S0020-0255(01)00069-X
  14. Karnik, N.N., Mendel, J.M. and Liang, Q. (1999), "Type-2 fuzzy logic systems", IEEE Transact. Fuzzy Syst., 7(6), 643-658. https://doi.org/10.1109/91.811231
  15. Liang, Q. and Mendel J.M. (2000), "Interval type-2 fuzzy logic systems: theory and design", IEEE Transact. Fuzzy Syst., 8(5), 535-550. https://doi.org/10.1109/91.873577
  16. Liu, F. (2008), "An efficient centroid type-reduction strategy for general type-2 fuzzy logic system", Inform. Sci., 178(9), 2224-2236. https://doi.org/10.1016/j.ins.2007.11.014
  17. Mendel, J.M. (2014), "General Type-2 Fuzzy Logic Systems Made Simple: A Tutorial", IEEE Transact. Fuzzy Syst., 5(22), 1162-1182. https://doi.org/10.1109/TFUZZ.2013.2286414
  18. Mendel, J.M. (2017), Uncertain Rule-based Fuzzy Systems, Introduction and New Directions, (2nd Edition), Springer, Switzerland. https://doi.org/10.1007/978-3-319-51370-6
  19. Mendel, J.M. and John, R.B. (2002), "Type-2 fuzzy sets made simple", IEEE Transact. Fuzzy Syst., 10(2), 117-127. https://doi.org/10.1109/91.995115
  20. Mendel, J.M., Liu, F. and Zhai, D. (2009), "α-plane representation for type-2 fuzzy sets: Theory and applications", IEEE Transact. Fuzzy Syst., 17(5), 1189-1207. https://doi.org/10.1109/TFUZZ.2009.2024411
  21. Mittal, K., Jain, A., Vaisla, K.S., Castillo, O. and Kacprzyk, J. (2020), "A comprehensive review on type 2 fuzzy logic applications: Past, present and future", Eng. Applicat. Artif. Intell., 95, 103916. https://doi.org/10.1016/j.engappai.2020.103916
  22. Mohammadi, R.K. and Haghighipour, F. (2017), "Implementation of uniform deformation theory in semi-active control of structures using fuzzy controller", Smart Struct. Syst., Int. J., 19(4), 351-360. https://doi.org/10.12989/sss.2017.19.4.351
  23. Ohtori, Y., Christenson, R.E., Spencer Jr, B.F. and Dyke, S.J. (2004), "Benchmark control problems for seismically excited nonlinear buildings", J. Eng. Mech., 130(4), 366-385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366)
  24. Ontiveros-Robles, E., Melin, P. and Castillo, O. (2018), "Comparative analysis of noise robustness of type 2 fuzzy logic controllers", Kybernetika, 54(1), 175-201. https://doi.org/10.14736/kyb-2018-1-0175
  25. Paul, S., Yu, W. and Li, X. (2018), "Bidirectional active control of structures with type-2 fuzzy PD and PID", Int. J. Syst. Sci., 49(4), 766-782. https://doi.org/10.1080/00207721.2017.1421724
  26. Ramezani1a, M., Bathaei, A. and Zahrai, S.M. (2019), "Comparing fuzzy type-1 and-2 in semi-active control with TMD considering uncertainties", Smart Struct. Syst., Int. J., 23(2), 155-171. https://doi.org/10.12989/sss.2019.23.2.155
  27. Tan, W.W. and Chua, T.W. (2007), "Uncertain rule-based fuzzy logic systems: introduction and new directions (Mendel, JM; 2001) [book review]", IEEE Computat. Intell. Magaz., 2(1), 72-73. https://doi.org/10.1109/MCI.2007.357196
  28. Wagner, C. and Hagras, H. (2010), "Toward general type-2 fuzzy logic systems based on zSlices", IEEE Transact. Fuzzy Syst., 18(4), 637-660. https://doi.org/10.1109/TFUZZ.2010.2045386
  29. Wu, D. (2012), "On the Fundamental Differences Between Interval Type-2 and Type-1 Fuzzy Logic Controllers", IEEE Transact. Fuzzy Syst., 20, 832-848. https://doi.org/10.1109/TFUZZ.2012.2186818
  30. Wu, D. and Mendel, J.M. (2019), "Recommendations on designing practical interval type-2 fuzzy systems", Eng. Applicat. Artif. Intell., 85, 182-193. https://doi.org/10.1016/j.engappai.2019.06.012
  31. Zadeh, L.A. (1965), "Fuzzy sets", Inform. Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  32. Zadeh, L.A. (1975), "The concept of a linguistic variable and its application to approximate reasoning-III", Inform. Sci., 9(1), 43-80. https://doi.org/10.1016/0020-0255(75)90017-1