과제정보
This research was supported by the Algerian Directorate General of Scientific Research and Technological Development (DGRSDT) and Mustapha STAMBOULI university of Mascara (UMS Mascara) in Algeria. The authors gratefully acknowledge the scientific support of the laboratory of "Etude des Structures et de Mécanique des Matériaux" (UMS Mascara, Algeria), and the laboratory of applied biomechanics and biomaterials (LABAB, ENP Oran, Algeria).
참고문헌
- Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Modell., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008
- Abdelrahman, A.A. and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8
- Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struct., 1-22. https://doi.org/10.1080/15397734.2020.1838298
- Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2021), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370
- Abo-Bakr, R.M., Eltaher, M.A. and Attia, M.A. (2020), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01146-0
- Akgoz, B. (2019), "Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions", Steel Compos. Struct., 33(1),133-142. http://dx.doi.org/10.12989/scs.2019.33.1.133
- Alazwari, M.A., Daikh, A.A. and Eltaher, M.A. (2022), "Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates", Adv. Nano Res., 12(2). https://doi.org/https://doi.org/10.12989/anr.2022.12.2.000
- Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412
- Bekhadda, A., Cheikh, A., Bensaid, I., Hadjoui, A. and Daikh, A. (2019), "A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams", Advances in Aircraft and Spacecraft Science, 6(3), 189-206. https://doi.org/10.12989/aas.2019.6.3.189
- Belarbi, M.O. and Tati, A. (2016), "Bending analysis of composite sandwich plates with laminated face sheets: New finite element formulation", J. Solid Mech., 8(2), 280-299.
- Belarbi, M.O., Garg, A., Houari, M.S.A., Hirane, H., Tounsi, A. and Chalak, H.D. (2021), "A three-unknown refined shear beam element model for buckling analysis of functionally graded curved sandwich beams" Eng. Comput., 1-28. https://doi.org/10.1007/s00366-021-01452-1
- Belarbi, M.O., Li, L., Ahmed Houari, M.S., Garg, A., Chalak, H.D., Dimitri, R. and Tornabene, F. (2022), "Nonlocal vibration of functionally graded nanoplates using a layerwise theory", Math. Mech. Solids, 10812865221078571. https://doi.org/10.1177/10812865221078571
- Belarbi, M.O., Houari, M.S.A., Hirane, H., Daikh, A.A. and Bordas, S.P.A. (2022a), "On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory", Compos. Struct., 279, 114715. https://doi.org/10.1016/j.compstruct.2021.114715
- Belarbi, M.O., Houari, M.S.A. Daikh, A.A. Garg, A. Merzouki, T. Chalak, H.D. and Hirane, H. (2021), "Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.113712
- Belarbi, M.O., Zenkour, A.M. Tati, A. Salami, S.J. Khechai, A. and Houari, M.S.A. (2020), "An efficient eight-node quadrilateral element for free vibration analysis of multilayer sandwich plates", Int. J. Numer. Method Eng., 122(9), 2360-2387. https://doi.org/10.1002/nme.6624.
- Bensaid, I., Daikh, A.A. and Drai, A. (2019), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", J. Mech. Eng. Sci., 234(18). https://doi.org/10.1177/0954406220916481
- Cao, D., Gao, Y. Yao, M.and Zhang, W. (2018), "Free vibration of axially functionally graded beams using the asymptotic development method", Eng. Struct., 173, 442-448. https://doi.org/10.1016/j.engstruct.2018.06.111
- Chaht, F.L., Kaci, A. Houari, M.S.A., Tounsi, A. Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. http://doi.org/10.12989/scs.2015.18.2.425
- Civalek, O ., Dastjerdi, S., Akbas S. and Akgoz B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Method Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.7069
- Daikh, A.A. (2019), "Temperature dependent vibration analysis of functionally graded sandwich plates resting on Winkler/ Pasternak/Kerr foundation", Mater. Res. Express, 6, 065702. https://doi.org/10.1088/2053-1591/ab097b
- Daikh, A.A. and Zenkour, A.M. (2019a), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory". Mater. Res. Express ,6, 115707. https://doi.org/10.1088/2053-1591/ab48a9
- Daikh, A.A. and Zenkour, A.M. (2019b), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater Res Express, 6, 065703. https://doi.org/10.1088/2053-1591/ab0971
- Daikh, A.A., Guerroudj, M., Elajrami, M., Megueni, A., (2019a), "Thermal buckling of functionally graded sandwich beams", Adv. Mater. Res., 1156, 43-59. https://doi.org/10.4028/www.scientific.net/AMR.1156.43
- Daikh, A.A., Houari, M.S.A. and Tounsi, A. (2019b), "Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory", Eng. Res. Express, 1, 015022. https://doi.org/10.1088/2631-8695/ab38f9
- Daikh, A.A. and Zenkour, A.M. (2020), "Bending of functionally graded sandwich nanoplates resting on Pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6(Special Issue), 1245-1259. https://doi.org/10.22055/JACM.2020.33136.2166
- Daikh, A.A., Drai, A. Bensaid, I. Houari, M.S.A. and Tounsi, A. (2020a), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636220909790
- Daikh, A.A., Bachiri, A. Houari, M.S.A. and Tounsi, A. (2020b), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Based Des. Struct., 50(4), 1371-1399. https://doi.org/10.1080/15397734.2020.1752232
- Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2020c), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347
- Daikh, A.A., Bensaid, I. and Zenkour, A.M. (2020d), "Temperature dependent thermomechanical bending response offunctionally graded sandwich plates", Eng. Res. Express, 2, 015006. https://doi.org/10.1088/2631-8695/ab638c
- Daikh, A.A., Bensaid, I., Bachiri, A., Houari, M.S.A. Tounsi, A., Merzouki, T. (2020e), "On static bending of multilayered carbon nanotube-reinforced composite plates", Comput. Concr., 26(2), 137-150. https://doi.org/10.12989/cac.2020.26.2.137
- Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020f), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. http://doi.org/10.12989/scs.2020.36.6.643
- Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2021a), "Analysis of axially temperature- dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 38(Suppl 3), 2533-2554. https://doi.org/10.1007/s00366-021-01413-8
- Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021b), "Buckling analysis of CNTRC curved sandwich nanobeams in thermal Environment", Appl. Sci., 11, 3250. https://doi.org/10.3390/app11073250
- Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Mohamed, S.A. and Eltaher, M.A. (2021c), "Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory", Defence Technology, 18(10), 1778-1809. https://doi.org/10.1016/j.dt.2021.09.011
- Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032
- Ebrahimi, F. and Barati, M.R. (2018), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518
- El-Ashmawy, A.M. and Xu, Y. (2021), "Combined effect of carbon nanotubes distribution and orientation on functionally graded nanocomposite beams using finite element analysis", Mater. Res. Express, 8(1), 015012. https://doi.org/10.1088/2053-1591/abc773
- Eltaher, M.A. and Mohamed, N. (2020a), "Nonlinear stability and vibration of imperfect CNTs by doublet mechanics" Appl. Math. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311
- Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013
- Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020b), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst., 26(2), 213-226. http://doi.org/10.12989/sss.2020.26.2.213
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Esen, I., Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubesunder moving point load", Eur. Phys. J. Plus, 136, 458. https://doi.org/10.1140/epjp/s13360-021-01419-7
- Esen, I., O zarpa, C. and Eltaher, M.A. (2021), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552
- Fan, Y. and Wang, H. (2015), "Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments", Compos. Struct., 124, 35-43. https://doi.org/10.1016/j.compstruct.2014.12.050
- Fan, Y. and Wang, H. (2016), "Nonlinear bending and postbuckling analysis of matrix cracked hybrid laminated plates containing carbon nanotube reinforced composite layers in thermal environments", Compos. Part B Eng., 86, 1-16. https://doi.org/10.1016/j.compositesb.2015.09.048
- Fan, Y. and Wang, H. (2016), "The effects of matrix cracks on the nonlinear bending and thermal postbuckling of shear deformable laminated beams containing carbon nanotube reinforced composite layers and piezoelectric fiber reinforced composite layers", Compos. Part B Eng., 106, 28-41. https://doi.org/10.1016/j.compositesb.2016.09.005
- Ferreira, A., Castro, L.M. and Bertoluzza, S. (2009), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-432. https://doi.org/10.1016/j.compstruct.2008.09.006
- Fiedler, B., Gojny, F.H. Wichmann, M.H. Nolte, M.C. and Schulte, K. (2006), "Fundamental aspects of nano-reinforced composites", Compos. Sci. Technol., 66(16), 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014
- Garg, A. and Chalak, H. (2020), "Novel higher-order zigzag theory for analysis of laminated sandwich beams", J. Mater. Des. Appl., 235(1), 176-194. https://doi.org/10.1177/1464420720957045
- Garg, A., Chalak, H.D., Belarbi, M.O., Zenkour, A.M. and Sahoo, R. (2021), "Estimation of carbon nanotubes and their applications as reinforcing composite materials-an engineering review", Compos. Struct., 272, 114234. https://doi.org/10.1016/j.compstruct.2021.114234
- Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Houari, M.S.A. (2021a), "A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures", Arch. Comput. Methods Eng., 1-34. https://doi.org/10.1007/s11831-021-09652-0
- Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Sahoo, R. (2022), "Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore", Thin Wall. Struct., 170, 108626. https://doi.org/10.1016/j.tws.2021.108626
- Garg, A., Chalak, H. D., Li, L., Belarbi, M. O., Sahoo, R. and Mukhopadhyay, T. (2022a), "Vibration and buckling analyses of sandwich plates containing functionally graded metal foam core", Acta Mechanica Solida Sinica, 1-16. https://doi.org/10.1007/s10338-021-00295-z
- Garg, A., Belarbi, M.O. Chalak, H. and Chakrabarti, A. (2020a), "A review of the analysis of sandwich FGM structures", Compos. Struct., 113427. https://doi.org/10.1016/j.compstruct.2020.113427
- Garg, A., Chalak, H.D. and Chakrabarti, A. (2020b), "Bending analysis of functionally graded sandwich plates using HOZT including transverse displacement effects", Mech. Based Des. Struct., 1-15. https://doi.org/10.1080/15397734.2020.1814157
- Ghannadpour, S., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024
- Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001
- Ghandourah, E.E., Daikh, A.A., Alhawsawi, A.M., Fallatah, O.A., Eltaher, M.A. (2022), "Bending and buckling of FG-GRNC laminated plates via Quasi-3D nonlocal strain gradient theory", Mathematics, 10(8), 1321. https://doi.org/10.3390/math10081321
- Ghayesh, M.H. and Farajpour, A. (2019), "Vibrations of shear deformable FG viscoelastic microbeams", Microsyst. Technol., 25(4), 1387-1400. https://doi.org/10.1007/s00542-018-4184-8
- Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. http://doi.org/10.12989/sem.2019.71.1.089
- Hirane, H., Belarbi, M.O. Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1
- Houari, M.S.A., Bessaim, A. Bernard, F. Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. http://doi.org/10.12989/scs.2018.28.1.013
- Karamanli, A. and Vo, T.P. (2021), "Finite element model for carbon nanotube-reinforced and graphene nanoplateletreinforced composite beams", Compos. Struct., 264, 113739. https://doi.org/10.1016/j.compstruct.2021.113739
- Jankowski, P., Zur, K.K. and Farajpour, A. (2022), "Analytical and meshless DQM approaches to free vibration analysis of symmetric FGM porous nanobeams with piezoelectric effect", Eng. Anal. Bound. Elem., 136, 266-289. https://doi.org/10.1016/j.enganabound.2022.01.007
- Karami, B., Janghorban, M. Shahsavari, D., Dimitri, R. and Tornabene, F. (2019), "Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes", Molecules, 24(15), 2750. https://doi.org/10.3390/molecules24152750
- Keshtegar, B., Kolahchi, R., Eyvazian, A. and Trung, N.T. (2021), "Dynamic stability analysis in hybrid nanocomposite polymer beams reinforced by carbon fibers and carbon nanotubes", Polymers, 13(1), 106. https://doi.org/10.3390/polym13010106
- Khaniki, H.B. and Ghayesh, M.H. (2020), "A review on the mechanics of carbon nanotube strengthened deformable structures", Eng. Struct., 220, 110711. https://doi.org/10.1016/j.engstruct.2020.110711
- Khaniki, H.B. and Ghayesh, M.H. (2020), "On the dynamics of axially functionally graded CNT strengthened deformable beams", Eur. Phys. J. Plus, 135(5), 415. https://doi.org/10.1140/epjp/s13360-020-00433-5
- Khdair, A., Daikh, A.A. and Eltaher, M.A. (2021), "novel fourunknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621
- Kumar, A., Sharma, K. and Dixit, A.R. (2020), "Carbon nanotubeand graphene-reinforced multiphase polymeric composites: Review on their properties and applications", J. Mater. Sci., 1-43. https://doi.org/10.1007/s10853-019-04196-y
- Li, C., Zheng, S. and Chen, D. (2020), "Size-dependent isogeometric analysis of bi-directional functionally graded microbeams reinforced by graphene nanoplatelets", J. Mech. Based Des. Struct., 1-19. https://doi.org/10.1080/15397734.2020.1848591
- Li, X., Li, L. Hu, Y. Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032
- Liew, K., Lei, Z. and Zhang, L. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
- Lim, C.W., Zhang, G. and Redd, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Mindlin, R.D. (1963), "Microstructure in linear elasticity", Technical Report No. AD0424156, Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, U.S.A. https://doi.org/10.1007/BF00248490
- Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37, 2823-2836. https://doi.org/10.1007/s00366-020-00976-2
- Mahesh, V. (2021), "Nonlinear damped transient vibrations of carbon nanotube-reinforced magneto-electro-elastic shells with different electromagnetic circuits", J. Vib. Eng. Technol., 1-24. https://doi.org/10.1007/s42417-021-00380-0
- Mahesh, V. (2021), "Nonlinear pyrocoupled deflection of viscoelastic sandwich shell with CNT reinforced magnetoelectro-elastic facing subjected to electromagnetic loads in thermal environment", Eur. Phys. J. Plus, 136(8), 1-30. https://doi.org/10.1140/epjp/s13360-021-01751-y
- Mahesh, V. (2022), "Effect of carbon nanotube-reinforced magneto-electro-elastic facings on the pyrocoupled nonlinear deflection of viscoelastic sandwich skew plates in thermal environment", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 236(1), 200-221. https://doi.org/10.1177/14644207211044093
- Mahesh, V. (2020), "Nonlinear deflection of carbon nanotube reinforced multiphase magnetoelectro-elastic plates in thermal environment considering pyrocoupling effects", Math. Method Appl. Sci., https://doi.org/10.1177/14644207211044093
- Mahesh, V. and Harursampath, D. (2020), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2020.1805059
- Mahesh, V. and Harursampath, D. (2020), "Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01098-5
- Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022a), "A dynamic analysis of randomly oriented functionally graded carbon nanotubes/fiber-reinforced composite laminated shells with different geometries", Mathematics, 10, 408. https://doi.org/10.3390/math10030408
- Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022b), "Free vibration of FG-CNTRCs nano-plates/ shells with temperature-dependent properties", Mathematics, 10, 583. https://doi.org/10.3390/math10040583
- Nejad, M.Z., Hadi, A. Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded EulerBernoulli nano-beams using integral form of Eringen's nonlocal elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417
- Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of EulerBernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161
- Nguyen, T.K. and Nguyen, B.D. (2015), "A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams", J. Sandw. Struct. Mater., 17(6), 613-631. https://doi.org/10.1177/1099636215589237
- Nguyen, V.H., Nguyen, T.K. Thai, H.T. and Vo, T.P. (2014), "A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates", Compos. Part B Eng., 66, 233-246. https://doi.org/10.1016/j.compositesb.2014.05.012
- Papargyri-Beskou, S., Tsepoura, K. Polyzos, D. and Beskos, D. (2003), "Bending and stability analysis of gradient elastic beams", Int. J. Solids Struct., 40(2), 385-400. https://doi.org/10.1016/S0020-7683(02)00522-X
- Rajasekaran, S. and Bakhshi Khaniki, H. (2019), "Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(14), 1245-1259. https://doi.org/10.1080/15376494.2018.1432797
- Sarkar, K. and Ganguli, R. (2014), "Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed-fixed boundary condition", Compos. Part B Eng., 58, 361-370. https://doi.org/10.1016/j.compositesb.2013.10.077
- Sayyad, A.S. and Ghugal, Y.M. (2019), "Modeling and analysis of functionally graded sandwich beams: A review", Mech. Adv. Mater. Struct., 26(21), 1776-1795. https://doi.org/10.1080/15376494.2018.1447178
- Shafiei, N., Kazemi, M. Safi, M. and Ghadiri, M. (2016), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009
- Shariati, A., Mohammad-Sedighi, H. Zur, K.K. Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707
- Shen, H.S. (2015), "Nonlinear analysis of functionally graded fiber reinforced composite laminated beams in hygrothermal environments, Part I: Theory and solutions", Compos. Struct., 125, 698-705. https://doi.org/10.1016/j.compstruct.2014.12.024
- Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotubereinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. https://doi.org/10.1016/j.engstruct.2013.06.002
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.S., He, X.Q. and Yang, D.Q. (2017), "Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations", Int. J. Non-Linear Mech., 91, 69-75. https://doi.org/10.1016/j.ijnonlinmec.2017.02.010
- Simsek, M. (2015), "Size dependent nonlinear free vibration of an axially functionally graded (AFG) microbeam using He's variational method", Compos. Struct., 131, 207-214. https://doi.org/10.1016/j.compstruct.2015.05.004
- Simsek, M. (2019), "Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory", Compos. Struct., 224, 111041. https://doi.org/10.1016/j.compstruct.2019.111041
- Talebizadehsardari, P., Eyvazian, A. Asmael, M. Karami, B. Shahsavari, D. and Mahani, R.B. (2020), "Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes", Thin Wall. Struct., 157, 107139. https://doi.org/10.1016/j.tws.2020.107139
- Thai, C.H., Zenkour, A. Wahab, M.A. and Nguyen-Xuan, H. (2016), "A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis", Compos. Struct., 139, 77-95. https://doi.org/10.1016/j.compstruct.2015.11.066
- Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
- Vo, T.P., Thai, H.T. Nguyen, T.K. Inam, F.and Lee, J. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006
- Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronautica, 127, 171-181. https://doi.org/10.1016/j.actaastro.2016.05.030
- Wang, Y., Ren, H. Fu, T.and Shi, C. (2020), "Hygrothermal mechanical behaviors of axially functionally graded microbeams using a refined first order shear deformation theory", Acta Astronautica, 166, 306-316. https://doi.org/10.1016/j.actaastro.2019.10.036
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. http://doi.org/10.1016/j.commatsci.2013.01.028
- Yang, F., Chong, A. Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Yengejeh, S.I., Kazemi, S.A. and O chsner, A. (2017), "Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches", Comput. Mater. Sci., 136, 85-101. https://doi.org/10.1016/j.commatsci.2017.04.023
- Yu, Y. and Shen, H.S. (2020), "A comparison of nonlinear bending and vibration of hybrid metal/CNTRC laminated beams with positive and negative poisson's ratios", Int. J. Struct. Stabil. Dyn., 2043007. https://doi.org/10.1142/S0219455420430075
- Zenkour, A. and Radwan, A. (2020), "Bending and buckling analysis of FGM plates resting on elastic foundations in hygrothermal environment", Arch. Civil Mech. Eng., 20(4), 1-23. https://doi.org/10.1007/s43452-020-00116-z
- Zhen, Y.X., Wen, S.L. and Tang, Y. (2019), "Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model", Physica E, 105, 116-124. https://doi.org/10.1016/j.physe.2018.09.005
- Zheng, S., Chen, D. and Wang, H. (2019), "Size dependent nonlinear free vibration of axially functionally graded tapered microbeams using finite element method", Thin Wall. Struct., 139, 46-52. https://doi.org/10.1016/j.tws.2019.02.033
- Zur, K.K., Farajpour, A., Lim, C.W. and Jankowski, P. (2021), "On the nonlinear dynamics of porous composite nanobeams connected with fullerenes", Compos. Struct., 274, 114356. https://doi.org/10.1016/j.compstruct.2021.114356