과제정보
The study has been partially supported by the Ministry of Science and Technology of the People's Republic of China under Grant No. 2018YFE0206100. The opinions and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organizations.
참고문헌
- Abbiati, G., Marelli, S., Bursi, O.S., Sudret, B. and Stojadinovic, B. (2015), "Uncertainty propagation and global sensitivity analysis in hybrid simulation using polynomial chaos expansion", Proceedings of the Fourth International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering.
- Abbiati, G., Marelli, S., Sudret, B. and Stojadinovic, B. (2018), "Hybrid simulation of mechanical systems with uncertain parameters based on surrogate modeling", Proceedings of the 11th National Conference on Earthquake Engineering, Los Angeles, CA, USA, June.
- Airouche, A., Bechtoula, H., Aknouche, H., Thoen, B.K. and Benouar, D. (2014), "Experimental identification of the six DOF CGS, Algeria, shaking table system", Smart Struct. Syst., Int. J., 13(1), 137-154. https://doi.org/10.12989/sss.2014.13.1.137
- Avci, M., Botelho, R.M. and Christenson, R. (2020), "Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis", Smart Struct. Syst., Int. J., 25(2), 155-167. https://doi.org/10.12989/sss.2020.25.2.155
- Bernal, D. (1992), "Instability of buildings subjected to earthquakes", J. Struct. Eng., 118(8), 2239-2260. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2239)
- Blatman, G. and Sudret, B. (2010), "An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis", Probabil. Eng. Mech., 25(2), 183-197. https://doi.org/10.1016/j.probengmech.2009.10.003
- Blatman, G. and Sudret, B. (2011), "Adaptive sparse polynomial chaos expansion based on least angle regression", J. Computat. Phys., 230(6), 2345-2367. https://doi.org/10.1016/j.jcp.2010.12.021
- Blanning, R.W. (1975), "The construction and implementation of metamodels", Simulation, 24(6), 177-184. https://doi.org/10.1177/003754977502400606
- Bourinet, J.M. (2016), "Rare-event probability estimation with adaptive support vector regression surrogates", Reliabil. Eng. Syst. Safety, 150, 210-221. https://doi.org/10.1016/j.ress.2016.01.023
- Casciati, S. and Hamdaoui, K. (2008), "Experimental and numerical studies toward the implementation of shape memory alloy ties in masonry structures", Smart Struct. Syst., Int. J., 4(2), 153-169. https://doi.org/10.12989/sss.2008.4.2.153
- Cha, Y.J., Agrawal, A.K., Friedman, A., Phillips, B., Ahn, R., Dong, B., Dyke, S.J., Spencer, B.F., Ricles, J. and Christenson, R. (2014), "Performance validations of semiactive controllers on large-scale moment-resisting frame equipped with 200-kN MR damper using real-time hybrid simulations", J. Struct. Eng., 140(10), p. 04014066. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000982
- Chae, Y., Ricles, J.M. and Sause, R. (2014), "Large-scale real-time hybrid simulation of a three-story steel frame building with magneto-rheological dampers", Earthq. Eng. Struct. Dyn., 43(13), 1915-1933. https://doi.org/10.1002/eqe.2429
- Chen, P.C. and Chen, P.C. (2020), "Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation", Smart Struct. Syst., Int. J., 25(6), 719-732. https://doi.org/10.12989/sss.2020.25.6.719
- Chen, C., Ricles, J.M., Marullo, T.M. and Mercan, O. (2009), "Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm", Earthq. Eng. Struct. Dyn., 38(1), 23-44. https://doi.org/10.1002/eqe.838
- Chen, C., Ricles, J.M., Karavasilis, T.L., Chae, Y. and Sause, R. (2012), "Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seismic loading", Eng. Struct., 35, 71-82. https://doi.org/10.1016/j.engstruct.2011.10.006
- Chen, C., Xu, W., Guo, T. and Chen, K. (2017), "Analysis of actuator delay and its effect on uncertainty quantification for real-time hybrid simulation", Earthq. Eng. Eng. Vib., 16(4), 713-725. https://doi.org/10.1007/s11803-017-0409-6
- Chen, P.C., Hsu, S.C., Zhong, Y.J. and Wang, S.J. (2019), "Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry", Smart Struct. Syst., Int. J., 23(1), 91-106. https://doi.org/10.12989/sss.2019.23.1.091
- Chen, M., Guo, T., Chen, C. and Xu, W. (2020), "Data-driven arbitrary polynomial chaos expansion on uncertainty quantification for real-time hybrid simulation under stochastic ground motions", Experim. Techniq., 44, 751-762. https://doi.org/10.1007/s40799-020-00381-w
- Chojaczyk, A.A., Teixeira, A.P., Neves, L.C., Cardoso, J.B. and Soares, C.G. (2015), "Review and application of artificial neural networks models in reliability analysis of steel structures", Struct. Safety, 52, 78-89. https://doi.org/10.1016/j.strusafe.2014.09.002
- Chowdhury, R. and Rao, B.N. (2009), "Assessment of high dimensional model representation techniques for reliability analysis", Probabil. Eng. Mech., 24(1), 100-115. https://doi.org/10.1016/j.probengmech.2008.02.001
- Darby, A.P., Blakeborough, A. and Williams, M.S. (1999), "Real-time substructure tests using hydraulic actuators", J. Eng. Mech., 125, 1133-1139. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:10(1133)
- Dermitzakis, S.N. and Mahin, S.A. (1985), "Development of Substructuring Techniques for On-Line Computer Controlled Seismic Performance Testing", Report UCB/EERC-85/04, Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
- Fang, H. and Horstemeyer, M.F. (2006), "Global response approximation with radial basis functions", Eng. Optimiz., 38(04), 407-424. https://doi.org/10.1080/03052150500422294
- Gao, X., Castaneda, N. and Dyke, S.J. (2013), "Real time hybrid simulation: from dynamic system, motion control to experimental error", Earthq. Eng. Struct. Dyn., 42(6), 815-832. https://doi.org/10.1002/eqe.2246
- Gaspar, B., Teixeira, A.P. and Soares, C.G. (2014), "Assessment of the efficiency of Kriging surrogate models for structural reliability analysis", Probabil. Eng. Mech., 37, 24-34. https://doi.org/10.1016/j.probengmech.2014.03.011
- Goda, K., Hong, H.P. and Lee, C.S. (2009), "Probabilistic characteristics of seismic ductility demand of sdof systems with bouc-wen hysteretic behavior", J. Earthq. Eng., 13(5), 600-622. https://doi.org/10.1080/13632460802645098
- Goel, R.K. and Chopra, A.K. (2004), "Evaluation of modal and FEMA pushover analyses: SAC buildings", Earthq. Spectra, 20(1), 225-254. https://doi.org/10.1193/1.1646390
- Guo, T., Xu, W. and Chen, C. (2014), "Analysis of decimation techniques to improve computational efficiency of a frequency-domain evaluation approach for real-time hybrid simulation", Smart Struct. Syst., Int. J., 14(6), 1197-1220. https://doi.org/10.12989/sss.2014.14.6.1197
- Hakuno, M., Shidawara, M. and Hara, T. (1969), "Dynamic destructive test of a cantilever beam, controlled by an analog-computer", Proceedings of the Japan Society of Civil Eengineers, Vol. 1969, No. 171, pp. 1-9. https://doi.org/10.2208/jscej1969.1969.171_1
- Hashemi, M.J. and Mosqueda, G. (2014), "Innovative substructuring technique for hybrid simulation of multistory buildings through collapse", Earthq. Eng. Struct. Dyn., 43(14), 2059-2074. https://doi.org/10.1002/eqe.2427
- Hayati, S. and Song, W. (2017), "An optimal discrete-time feedforward compensator for real-time hybrid simulation", Smart Struct. Syst., Int. J., 20(4), 483-498. https://doi.org/10.12989/sss.2017.20.4.483
- Hurtado, J.E. and Alvarez, D.A. (2001), "Neural-network-based reliability analysis: a comparative study", Comput. Methods Appl. Mech. Eng., 191(1-2), 113-132. https://doi.org/10.1016/S0045-7825(01)00248-1
- Ibarra, L.F., Medina, R.A. and Krawinkler, H. (2005), "Hysteretic models that incorporate strength and stiffness deterioration", Earthq. Eng. Struct. Dyn., 34(12), 1489-1511. https://doi.org/10.1002/eqe.495
- Iman, R.L., Davenport, J.M. and Zeigler, D.K. (1980), Latin hypercube sampling (program user's guide), OSTI 5571631.
- Isukapalli, S.S., Roy, A. and Georgopoulos, P.G. (1998), "Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems", Risk Anal., 18(3), 351-363. https://doi.org/10.1111/j.1539-6924.1998.tb01301.x
- Jin, R., Chen, W. and Sudjianto, A. (2002), "On sequential sampling for global metamodeling in engineering design", In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 36223, pp. 539-548. https://doi.org/10.1115/DETC2002/DAC-34092
- Krawinkler, H. and Seneviratna, G.D.P.K. (1998), "Pros and cons of a pushover analysis of seismic performance evaluation", Eng. Struct., 20(4-6), 452-464. https://doi.org/10.1016/S0141-0296(97)00092-8
- Lee, S.K., Park, E.C., Min, K.W., Lee, S.H., Chung, L. and Park, J.H. (2007), "Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid damper controlling seismic response of building structures", J. Sound Vib., 302(3), 596-612. https://doi.org/10.1016/j.jsv.2006.12.006
- Lignos, D.G. and Krawinkler, H. (2011), "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading", J. Struct. Eng., 137(11), 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376
- Lignos, D.G., Moreno, D.M. and Billington, S.L. (2014), "Seismic retrofit of steel moment-resisting frames with high-performance fiber-reinforced concrete infill panels: Large-scale hybrid simulation experiments", J. Struct. Eng., 140(3), p. 04013072. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000877
- Lin, Y.C., Sause, R. and Ricles, J. (2013), "Seismic performance of a large-scale steel self-centering moment-resisting frame: MCE hybrid simulations and quasi-static pushover tests", J. Struct. Eng., 139(7), 1227-1236. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000661
- Mahin, S.A., Shing, P.S.B., Thewalt, C.R. and Hanson, R.D. (1989), "Pseudodynamic test method-current status and future directions", J. Struct. Eng., 115(8), 2113-2128. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:8(2113)
- Marelli, S. and Sudret, B. (2015), "UQLab user manual-Polynomial chaos expansions", In: Chair of Risk, Safety &Uncertainty Quantification, ETH Zurich, 0.9-104 edition, pp. 97-110.
- Martin, J.D. and Simpson, T.W. (2005), "Use of kriging models to approximate deterministic computer models", AIAA Journal, 43(4), 853-863. https://doi.org/10.2514/1.8650
- McKenna, F. (2011), "OpenSees: a framework for earthquake engineering simulation", Comput. Sci. Eng., 13(4), 58-66. https://doi.org/10.1109/MCSE.2011.66
- Mooney, C.Z. (1997), Monte Carlo Simulation, Vol. 116, Sage publications.
- Mosqueda, G., Stojadinovic, B. and Mahin, S.A. (2007), "Real-time error monitoring for hybrid simulation. Part I: methodology and experimental verification", J. Struct. Eng., 133(8), 1100-1108. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1100)
- Mosqueda, G., Stojadinovic, B. Hanley, J. Sivaselvan, M. and Reinhorn, A.M. (2008), "Hybrid seismic response simulation on a geographically distributed bridge model", J. Struct. Eng., 134(4), 535-543. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(535)
- Nakashima, M. (2001), "Development, potential, and limitations of real-time online (pseudo-dynamic) testing", Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359(1786), 1851-1867. https://doi.org/10.1098/rsta.2001.0876
- Nakashima, M. (2020), "Hybrid simulation: An early history", Earthq. Eng. Struct. Dyn., 49(10), 949-962. https://doi.org/10.1002/eqe.3274
- Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. Dyn., 21(1), 79-92. https://doi.org/10.1002/eqe.4290210106
- Nakashima, M., Matsumiya, T., Suita, K. and Liu, D. (2006), "Test on full-scale three-storey steel moment frame and assessment of ability of numerical simulation to trace cyclic inelastic behaviour", Earthq. Eng. Struct. Dyn., 35(1), 3-19. https://doi.org/10.1002/eqe.528
- Nakata, N. and Stehman, M. (2014), "Compensation techniques for experimental errors in real-time hybrid simulation using shake tables", Smart Struct. Syst., Int. J., 14(6), 1055-1079. https://doi.org/10.12989/sss.2014.14.6.1055
- Nakata, N., Spencer Jr, B.F. and Elnashai, A.S. (2007), "Multi-dimensional mixed-mode hybrid simulation control and applications", Newmark Structural Engineering Laboratory. University of Illinois at Urbana-Champaign.
- Nakata, N., Dyke, S., Zhang, J., Mosqueda, G., Shao, X., Mahmoud, H., Head, M.H., Bletzinger, M., Marshall, G.A., Ou, G. and Song, C. (2014), Hybrid Simulation Primer and Dictionary. https://datacenterhub.org/resources/8102
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098
- Niederreiter, H. (1992), Random number generation and quasi-Monte Carlo methods, Society for Industrial and Applied Mathematics.
- Ramos, M.D.C., Mosqueda, G. and Hashemi, M.J. (2016), "Large-scale hybrid simulation of a steel moment frame building structure through collapse", J. Struct. Eng., 142(1), 04015086. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001328
- Schellenberg, A., Mahin, S.A. and Fenves, G.L. (2007), "A software framework for hybrid simulation of large structural systems", In: Structural Engineering Research Frontiers, pp. 1-16. https://doi.org/10.1061/40944(249)3
- Shao, X., Reinhorn, A.M. and Sivaselvan, M.V. (2011), "Real-time hybrid simulation using shake tables and dynamic actuators", J. Struct. Eng., 137(7), 748-760. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000314
- Shao, X., van de Lindt, J., Bahmani, P., Pang, W., Ziaei, E., Symans, M., Tian, J. and Dao, T. (2014), "Real-time hybrid simulation of a multi-story wood shear wall with first-story experimental substructure incorporating a rate-dependent seismic energy dissipation device", Smart Struct. Syst., Int. J., 14(6), 1031-1054. https://doi.org/10.12989/sss.2014.14.6.1031
- Shen, S.D., Pan, P., Li, W.F., Miao, Q.S. and Gong, R.H. (2019), "Test on the anchoring components of steel shear keys in precast shear walls", Smart Struct. Syst., Int. J., 24(6), 783-791. http://doi.org/10.12989/sss.2019.24.6.783
- Silva, C.E., Gomez, D., Maghareh, A., Dyke, S.J. and Spencer Jr, B.F. (2020), "Benchmark control problem for real-time hybrid simulation", Mech. Syst. Signal Process., 135, 106381. https://doi.org/10.1016/j.ymssp.2019.106381
- Sivaselvan, M.V. and Reinhorn, A.M. (2000), "Hysteretic models for deteriorating inelastic structures", J. Eng. Mech., 126(6), 633-640. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:6(633)
- Sobol, I.M. (1993), "Sensitivity estimates for nonlinear mathematical models", Math. Model. Comput. Exp., 1(4), 407414.
- Song, J.K. and Pincheira, J.A. (2000), "Spectral displacement demands of stiffness-and strength-degrading systems", Earthq. Spectra, 16(4), 817-851. https://doi.org/10.1193/1.1586141
- Stojadinovic, B., Mosqueda, G. and Mahin, S.A. (2006), "Event-driven control system for geographically distributed hybrid simulation", J. Struct. Eng., 132(1), 68-77. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(68)
- Takizawa, H. and Jennings, P.C. (1980), "Collapse of a model for ductile reinforced concrete frames under extreme earthquake motions", Earthq. Eng. Struct. Dyn., 8(2), 117-144. https://doi.org/10.1002/eqe.4290080204
- Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141
- Villaverde, R. (2007), "Methods to assess the seismic collapse capacity of building structures: State of the art", J. Struct. Eng., 133(1), 57-66. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(57)
- Vian, D. and Bruneau, M. (2003), "Tests to structural collapse of single degree of freedom frames subjected to earthquake excitations", J. Struct. Eng., 129(12), 1676-1685. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1676)
- Wang. T., Nakashima, M. and Pan, P. (2006), "On-line hybrid test combining with general-purpose finite element software", Earthq. Eng. Struct. Dyn., 35(12), 1471-1488. https://doi.org/10.1002/eqe.586
- Wang, T., McCormick, J., Yoshitake, N., Pan, P., Murata, Y. and Nakashima, M. (2008), "Collapse simulation of a four-story steel moment frame by a distributed online hybrid test", Earthq. Eng. Struct. Dyn., 37(6), 955-974. https://doi.org/10.1002/eqe.798
- Wang, Z., Wu, B., Bursi, O.S., Xu, G. and Ding, Y. (2014), "An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 14(6), 1247-1267. https://doi.org/10.12989/sss.2014.14.6.1247
- Wang, Z., Xu, G., Li, Q. and Wu, B. (2020a), "An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 25(5), 569-580. https://doi.org/10.12989/sss.2020.25.5.569
- Wang, Z., Tan, Q., Shi, P., Yang, G., Zhu, S., Xu, G., Wu, B. and Sun, J. (2020b), "Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation", Smart Struct. Syst., Int. J., 26(3), 373-390. https://doi.org/10.12989/sss.2020.26.3.373
- Wiener, N. (1938), "The homogeneous chaos", Am. J. Mathe., 60(4), 897-936. https://doi.org/10.2307/2371268
- Wu, B. and Wang, T. (2014), "Model updating with constrained unscented Kalman filter for hybrid testing", Smart Struct. Syst., Int. J., 14(6), 1105-1129. https://doi.org/10.12989/sss.2014.14.6.1105
- Wu, B., Xu, G., Wang, Q. and Williams, M.S. (2006), "Operator-splitting method for real-time substructure test", Earthq. Eng. Struct. Dyn., 35(3), 293-314. https://doi.org/10.1002/eqe.519
- Xiu, D. and Karniadakis, G.E. (2002), "The Wiener--Askey polynomial chaos for stochastic differential equations", SIAM J. Scientif. Comput., 24(2), 619-644. https://doi.org/10.1137/S1064827501387826