DOI QR코드

DOI QR Code

Influence of dual layer confinement on lateral load capacity of stone columns: An experimental investigation

  • Received : 2022.08.19
  • Accepted : 2023.02.15
  • Published : 2023.03.25

Abstract

Enhanced vertical load capacity of the ground reinforced with the stone columns drew great attention by the researchers as it deals with many of the geotechnical difficulties associated with the weak ground. Recently, it has been found that the stone columns are also prone to fail under the shear load when employed beneath the embankments or the foundations susceptible to lateral loads. In this study, the effect of various encasement conditions on the lateral deflection of stone columns is investigated. A method of dual layers of encasement has been introduced and its the effect on lateral load capacity of the stone columns has been compared with those of the single encased stone column and the un-encased stone columns. Large shear box tests were utilised to generate the shear deformation on the soil system under various normal pressure conditions. The stiffness of the soil-stone column combined system has been compared for various cases of encasement conditions with different diameters. When subjected to lateral deformation, the encased columns outperformed the un-encased stone columns installed in loose sand. Shear stress resistance is up to 1.7 times greater in dual-layered, encased columns than in unencased columns. Similarly, the secant modulus increases as the condition changes from an unencased stone column to single-layer encasement and then to dual-layer encasement, indicating an improvement in the overall soil-stone column system.

Keywords

References

  1. Abusharar, S.W. and Han, J. (2011), "Two-dimensional deep-seated slope stability analysis of embankments over stone column improved soft clay", Eng. Geol., 120, 103-110. https://doi.org/10.1016/j.enggeo.2011.04.002.
  2. Abhishek, S.V., Rajyalakshmi, K. and Madhav, M.R. (2016), "Engineering of ground with granular piles: a critical review", Int. J. Geotech. Eng., 10(4), 337-357. https://doi.org/10.1080/19386362.2016.1145942.
  3. Aghili, E., Hosseinpour, I., Chenari, R.J. and Ahmadi, H. (2021), "Behavior of granular column-improved clay under cyclic shear loading", Transport. Geotech., 31, 100654. https://doi.org/10.1016/j.trgeo.2021.100654.
  4. Alexiew, D., Brokemper, D. and Lothspeich, S. (2005), "Geotextile encased columns (GEC): load capacity, geotextile selection and pre-design Graphs", Proceedings of the Contemporary issues in Foundation Engineering, Geo-Frontiers Congress, Austin, Texas, January. https://doi.org/10.1061/40777(156)12.
  5. Ali, K., Shahu, J.T. and Sharma, K.G. (2014), "Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement", Geosynth. Int., 21(2), 103-118. https://doi.org/10.1680/gein.14.00002.
  6. Alkhorshid, N.R., Araujo, G.L., Palmeira, E.M. and Zornberg, J. G. (2019), "Large-scale load capacity tests on a geosynthetic encased column", Geotext. Geomembranes, 47(5), 632-641. https://doi.org/10.1016/j.geotexmem.2019.103458.
  7. Almeida, M.S., Hosseinpour, I., Riccio, M. and Alexiew, D. (2015), "Behavior of geotextile-encased granular columns supporting test embankment on soft deposit", J. Geotech. Geoenviron. Eng., 141(3), 04014116. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001256.
  8. Almeida, M.S.S., Hosseinpour, I. and Riccio, M. (2013), "Performance of a geosynthetic-encased column (GEC) in soft ground: numerical and analytical studies", Geosynthetics Int., 20(4), 252-262. https://doi.org/10.1680/gein.13.00015.
  9. Bhattacharya, P. and Kumar, J. (2017), "Bearing capacity of foundations on soft clays with granular column and trench", Soils Found., 57(3), 488-495. https://doi.org/10.1016/j.sandf.2017.05.013.
  10. Brokemper, D., Sobolewski, J., Alexiew, D. and Brok, C. (2006), "Design and construction of geotextile encased columns supporting geogrid reinforced landscape embankments", Proceeding of the 8th International Conference on Geosynthetics, Bastions Vijfwal Houten in the Netherlands,October.
  11. Basack, S., Indraratna, B., Rujikiatkamjorn, C. and Siahaan, F. (2017), "Modeling the stone column behavior in soft ground with special emphasis on lateral deformation", J. Geotech. Geoenviron. Eng., 143(6), 04017016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001652.
  12. Black, J.A., Sivakumar, V., Madhav, M.R. and Hamill, G.A. (2007), "Reinforced stone columns in weak deposits: laboratory model study", J. Geotech. Geoenviron. Eng., 133(9), 1154-1161. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1154).
  13. Castro, J., Cimentada, A., da Costa, A., Canizal, J. and Sagaseta, C. (2013), "Consolidation and deformation around stone columns: Comparison of theoretical and laboratory results", Comput. Geotech., 49, 326-337. https://doi.org/10.1016/j.compgeo.2012.09.004.
  14. Cengiz, C., Kilic, I. E. and Guler, E. (2019), "On the shear failure mode of granular column embedded unit cells subjected to static and cyclic shear loads", Geotext. Geomembranes, 47(2),193-202. https://doi.org/10.1016/j.geotexmem.2018.12.011.
  15. Chen, J.F., Li, L.Y., Xue, J.F. and Feng, S.Z. (2015), "Failure mechanism of geosynthetic-encased stone columns in soft soils under embankment", Geotext. Geomembranes, 43(5), 424-431. https://doi.org/10.1016/j.geotexmem.2015.04.016.
  16. Chen, R.P., Chen, Y.M., Han, J. and Xu, Z.Z. (2008), "A theoretical solution for pile-supported embankments on soft soils under one-dimensional compression", Can. Geotech. J., 45(5), 611-623. https://doi.org/10.1139/T08-003.
  17. Castro, J. and Sagaseta, C. (2011), "Deformation and consolidation around encased stone columns", Geotext. Geomembranes, 29(3), 268-276. https://doi.org/10.1016/j.geotexmem.2010.12.001.
  18. Das, A.K. and Deb, K. (2017), "Modeling of stone column-supported embankment under axi-symmetric condition", Geotech. Geol. Eng., 35(2), 707-730. https://doi.org/10.1007/s10706-016-0136-1.
  19. Dash, S.K. and Bora, M.C. (2013), "Influence of geosynthetic encasement on the performance of stone columns floating in soft clay", Can. Geotech. J., 50(7), 754-765. https://doi.org/10.1139/cgj-2012-0437.
  20. Dash, S.K., Rajagopal, K. and Krishnaswamy, N.R. (2004), " Performance of different geosynthetic reinforcement materials in sand foundations", Geosynthetics Int., 11(1), 35-42. https://doi.org /10.1680/gein.2004.11.1.35.
  21. Deb, K. and Mohapatra, S.R. (2013), "Analysis of stone column-supported geosynthetic-reinforced embankments", Appl. Math. Model., 37(5), 2943-2960. https://doi.org/10.1016/j.apm.2012.07.002.
  22. Deb, K. and Dhar, A. (2011), "Optimum design of stone column-improved soft soil using multiobjective optimization technique", Comput. Geotech., 38(1), 50-57 https://doi.org/10.1016/j.compgeo.2010.10.005.
  23. Elsawy, M.B.D. (2013), "Behaviour of soft ground improved by conventional and geogrid-encased stone columns, based on FEM study", Geosynthetics Int., 20(4), 276-285. https://doi.org/10.1680/gein.13.00017.
  24. Fox, Z.P. (2011), "Critical state, dilatancy and particle breakage of mine waste rock", Master's Thesis, Colorado State University, Fort Collins, USA.
  25. Guo, X., Zhang, H. and Liu, L. (2020), "Planar geosynthetic-reinforced soil foundations: a review", SN Appl. Sci., 2, 1-18. https://doi.org/10.1007/s42452-020-03930-5.
  26. Gao, J., Zhang, Y., Wang, C. and Yuan, C. (2021), "Behavior characteristics of geosynthetic-encased stone column under cyclic loading", Transport. Geotech., 28, 100554. https://doi.org/10.1016/j.trgeo.2021.100554.
  27. Gniel, J. and Bouazza, A. (2009), "Improvement of soft soils using geogrid encased stone columns", Geotext. Geomembranes, 27(3), 167-175. https://doi.org/10.1016/j.geotexmem.2008.11.001.
  28. Gniel, J. and Bouazza, A. (2010), "Construction of geogrid encased stone columns: A new proposal based on laboratory testing", Geotext. Geomembranes, 28(1), 108-118. https://doi.org/10.1016/j.geotexmem.2009.12.012.
  29. Gholaminejad, A., Mahboubi, A. and Noorzad, A. (2020), "Encased stone columns: coupled continuum-discrete modelling and observations", Geosynthetics Int., 27(6), 581-592. https://doi.org/10.1680/jgein.20.00017
  30. Ghazavi, M. and Afshar, J.N. (2013), "Bearing capacity of geosynthetic encased stone columns", Geotext. Geomembranes, 38, 26-36. https://doi.org/10.1016/j.geotexmem.2013.04.003.
  31. Gu, M., Han, J. and Zhao, M. (2020), "Three-dimensional DEM analysis of axially loaded geogrid-encased stone column in clay bed", Int. J. Geomech., 20(3), 04019180. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001595.
  32. Hosseinpour, I., Almeida, M.S.S. and Riccio, M. (2016), "Ground improvement of soft soil by geotextile-encased columns", Proc. Inst. Civil Engineers-Ground Improvement, 169(4), 297-305, https://doi.org/10.1680/jgrim.16.00009.
  33. Han, J. and Gabr, M.A. (2002), "Numerical analysis of geosynthetic reinforced and pile-supported earth platforms over soft soil", J. Geotech. Geoenviron. Eng., 128(1), 44-53. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(44).
  34. Han, J. and Ye, S.L., (2001), "Simplified method for consolidation rate of stone column reinforced foundations"; J. Geotech. Geoenviron. Eng. ASCE, 127(7), 597-603. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(597).
  35. Han, J., Huang, J. and Porbaha, A. (2005), "2D numerical modeling of a constructed geosynthetic-reinforced embankment over deep mixed columns", In: ASCE Geotechnical Special Publication (GSP) No.131, Contemporary Issues in Foundation Engineering, ASCE GeoFrontiers, 1-11, Austin (TX), January. https://doi.org/10.1061/40777(156)13.
  36. Hewlett, W.J. (1988), "Analysis of piled embankment", Ground Engrg., 21(3), 12-18
  37. Indraratna, B., Basack, S. and Rujikiatkamjorn, C. (2013), "Numerical solution of stone column improved soft soil considering arching, clogging and smear effects", J. Geotech. Geoenviron. Eng., 139(3), 377-394. https://doi.org/10.1061/(ASCE)GT.19435606.0000789.
  38. Jaiswal, A. and Kumar, R. (2022), "Finite element analysis of granular column for various encasement conditions subjected to shear load", Geomech. Eng., 29(6), 645-655. https://doi.org/10.12989/gae.2022.29.6.645.
  39. Khabbazian, M., Kaliakin, V.N. and Meehan, C.L. (2015), "Column supported embankments with geosynthetic encased columns: validity of the unit cell concept", Geotech. Geol. Eng., 33, 425-442. https://doi.org/10.1007/s10706-014-9826-8.
  40. Khajeh, A., Ebrahimi, S.A., Mola Abasi, H., Jamshidi Chenari, R. and Payan, M. (2021), "Effect of EPS beads in lightening a typical zeolite and cement-treated sand", Bull. Eng. Geol. Environ., 80(11), 8615-8632. https://doi.org/10.1007/s10064-021-02458-1.
  41. Khajeh, A., Jamshidi Chenari, R. and Payan, M. (2020), "A simple review of cemented non-conventional materials: soil composites", Geotech. Geol. Eng., 38, 1019-1040. https://doi.org/10.1007/s10706-019-01090-x.
  42. Khajeh, A., Jamshidi Chenari, R. and Payan, M. (2020), "A review of the studies on soil-EPS composites: beads and blocks", Geotech. Geol. Eng., 38, 3363-3383. https://doi.org/10.1007/s10706-020-01252-2.
  43. Khajeh, A., Jamshidi Chenari, R., Mola Abasi, H. and Payan, M. (2022), "An experimental investigation on geotechnical properties of a clayey soil stabilised with lime and zeolite in base and subbase courses", Road Mater. Pavement Design, 23(12), 2924-2941. https://doi.org/10.1080/14680629.2021.1997789.
  44. Khaksar Najafi, E., Jamshidi Chenari, R., Payan, M. and Arabani, M. (2021), "A sustainable landfill liner material: clay-fly ash geopolymers", Bull. Eng. Geol. Environ., 80, 4111-4124. https://doi.org/10.1007/s10064-021-02185-7.
  45. Khaksar Najafi, E., Jamshidi Chenari, R., Payan, M. and Arabani, M. (2021), "Compositional effects of clay-fly ash geopolymers on the sorption process of lead and zinc", J. Environ. Quality, 50(3), 768-781. https://doi.org/10.1002/jeq2.20207.
  46. Katti, R.K., Katti, A.R. and Naik, S. (1993), "Monograph to analysis of stone columns with and without geosynthetic encasement", CBIP Publication, New Delhi, India.
  47. Kowalski, T.E., Starry, D.W. and America, J.W. (2007), "Modern soil stabilization techniques", Proceedings of the Annual Conference of the Transportation Association of Canada, Saskatoon, Saskatchewan, October.
  48. Kong, G., Zhou, Y. and Liu, H. (2018), "Nonlinear model analysis of radial bulging deformation of geosynthetic-encased stone columns", Int. J. Geomech., 18(10), 06018022. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001195.
  49. Kitazume, M. and Maruyama, K. (2007), "Internal stability of group column type deep mixing improved ground under embankment loading", Soils Found., 47(3), 437-455. https://doi.org/10.3208/sandf.47.437.
  50. Kitazume, M. and Maruyama, K. (2006), "External stability of group column type deep mixing improved ground under embankment loading", Soils Found., 46(3), 323-340. https://doi.org/10.3208/sandf.46.323.
  51. Low, B.K., Tang, S.K. and Choa, V. (1994), "Arching in piled embankments", J. Geotech. Eng., 120(11), 1917-1938. https://doi.org/10.1061/(ASCE)0733-410(1994)120:11(1917).
  52. Li, L.Y., Rajesh, S. and Chen, J.F. (2021), "Centrifuge model tests on the deformation behavior of geosynthetic-encased stone column supported embankment under undrained condition", Geotext. Geomembranes, 49(3), 550-563. https://doi.org/10.1016/j.geotexmem.2020.11.003.
  53. Lima, B.T., Almeida, M.S. and Hosseinpour, I. (2022), "Field measured and simulated performance of a stone columns-strengthened soft clay deposit", Int. J. Geotech. Eng., 16(6), 776-785. https://doi.org/10.1080/19386362.2019.1653506.
  54. Malarvizhi, S.N. and Ilamparuthi, K. (2007), "Comparative study on the behavior of encased stone column and conventional stone column", Soils Found., 47(5), 873-885. https://doi.org/10.3208/sandf.47.873.
  55. Martin, L., Alizadeh, V. and Meegoda, J. (2019), "Electro-osmosis treatment techniques and their effect on dewatering of soils, sediments, and sludge: A review", Soils Found., 59(2), 407-418. https://doi.org/10.1016/j.sandf.2018.12.015.
  56. Murugesan, S. and Rajagopal, K. (2006), "Geosynthetic-encased stone columns: numerical evaluation", Geotext. Geomembranes, 24(6), 349-358. https://doi.org/10.1016/j.geotexmem.2006.05.001.
  57. Murugesan, S. and Rajagopal, K. (2007), "Model tests on geosynthetic-encased stone columns", Geosynthetics Int., 14(6), 346-354. https://doi.org/10.1680/gein.2007.14.6.346.
  58. Maheshwari, P. and Chauhan, V.B. (2013), "Beams on extensible geosynthetics and stone-column-improved soil", Proceedings of the Institution of Civil Engineers-Ground Improvement, India, November. https://doi.org/10.1680/grim.12.00005.
  59. McCabe, B., Kamrat-Pietraszewska, D. and Egan, D. (2013)," Ground heave induced by installing stone columns in clay soils", Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, India, December. https://doi.org/10.1680/geng.12.00103.
  60. McKenna, J.M., Eyre, W.A. and Wolstenholme, D.R. (1975), "Performance of an embankment supported by stone columns in soft ground", Geotechnique, 25(1), 51-59. https://doi.org/10.1680/geot.1975.25.1.51.
  61. Mitchell, J.K. and Huber, T.R. (1985), "Performance of a stone column foundation", J. Geotech. Eng., 111(2), 205-223. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:2(205).
  62. Murugesan, S. and Rajagopal, K. (2010), "Studies on the behavior of single and group of geosynthetic encased stone columns", J. Geotech. Geoenviron. Eng., 136, 129-139. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000187.
  63. Mohapatra, S.R., Rajagopal, K. and Sharma, J. (2016), "Direct shear tests on geosynthetic-encased granular columns", Geotext. Geomembranes, 44, 396-405. https://doi.org/10.1016/j.geotexmem.2016.01.002.
  64. Murty, V.R. and Praveen, G.V. (2008), "Use of chemically stabilized soil as cushion material below light weight structures founded on expansive soils", J. Mater. Civil Eng., 20(5), 392-400. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:5(392).
  65. Naeini, S.A. and Gholampoor, N. (2019), "Effect of geotextile encasement on the shear strength behavior of stone column-treated wet clays", Indian Geotech. J., 49(3), 2 92-303. https://doi.org/10.1007/s40098-018-0329-z.
  66. Nazariafshar J. and Aslani, M. (2020), "Effect of stress concentration ratio on shear strength of soft soils improved with stone columns", Iran J. Sci. Technol. T. Civil Eng., 45(1-4), 1-20. http://doi.org/10.1007/s40996-020-00391-z..
  67. Ng, K.S. and Tan, S.A. (2015), "Stress transfer mechanism in 2D and 3D unit cell models for stone column improved ground", Int. J. Geosynth. Ground Eng., 1(3). https://doi.org/10.1007/s40891-014-0003-1.
  68. Nayak, N.V. (1983), "Recent advances in ground improvements by stone column", Proceedings of the Indian Geotechnical Conference, Madras.
  69. Ou Yang, F., Zhang, J.J., Liao, W.M., Han, J.W., Tang, Y.L. and Bi, J.B. (2017), "Characteristics of the stress and deformation of geosynthetic-encased stone column composite ground based on large-scale model tests", Geosynthetics Int., 24(3), 242-254. https://doi.org/10.1680/jgein.16.00028
  70. Phani Kumar, B.R. and Sharma, R.S. (2004), "Effect of fly ash on engineering properties of expansive soils", J. Geotech. Geoenviron. Eng., 130(7), 764-767. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(764).
  71. Poorooshasb, H.B., and Meyerhof, G.G. (1996), "Consolidation settlement of rafts supported by stone columns", Geotech. Eng., 27, 83-92.
  72. Priebe, H.J. (1995), "The design of vibro replacement", Ground Eng., 28(10), 31.
  73. Pulko, B., Majes, B. and Logar, J. (2011), "Geosynthetic-encased stone columns: analytical calculation model", Geotext. Geomembranes, 29(1), 29-39. https://doi.org/10.1016/j.geotexmem.2010.06.005.
  74. Raithel, M., Kirchner, A., Schade, C. and Leusink, E. (2005), "Foundation of constructions on very soft soils with geotextile encased columns-state of the art", Geotech. Special Publication, 136. https://doi.org/10.1061/40783(162)20.
  75. Raithel, M. and Kempfert, H.G. (2000), "Calculation models for dam foundations with geotextile-coated sand columns", Proceedings of the ISRM International Symposium, Melbourne, Australia, November.
  76. Sadr, A. and Hataf, N. (2021), "Experimental and analytical study on soil bag and encased sand columns in loose sand", Transport. Geotech., 29, 100553. https://doi.org/10.1016/j.trgeo.2021.100553.
  77. Shahu, J.T. and Reddy, Y.R. (2014), "Estimating long-term settlement of floating stone column groups", Can. Geotech. J., 51(7), 770-781. https://doi.org/10.1139/cgj-2012-0477.
  78. Shirmohammadi, S., Ghaffarpour Jahromi, S., Payan, M. and Senetakis, K. (2021), "Effect of lime stabilization and partial clinoptilolite zeolite replacement on the behavior of a silt-sized low-plasticity soil subjected to freezing-thawing cycles", Coatings, 11(8), 994. https://doi.org/10.3390/coatings11080994.
  79. Stoeber, J.N. (2012), "Effects of maximum particle size and samplescaling on the mechanical behavior of mine waste rock;Article state approach", Master's Thesis, Colorado State University, Fort Collins, USA.
  80. Terzaghi, K. (1944), "Theoretical Soil Mechanics", Chapman and Hali, Limited John Wiler and Sons. Inc, New York USA.
  81. Van Impe, W.F. (1989), "Soil improvement techniques and their evolution", Balkema, Rotterdam, Netherlands.
  82. Wu, C.S. and Hong, Y.S. (2014), "A simplified approach for evaluating the bearing performance of encased granular columns", Geotext. Geomembranes, 42(4), 339-347. https://doi.org/10.1016/j.geotexmem.2014.05.006.
  83. Xu, Z., Zhang, L. and Zhou, S. (2021), "Influence of encasement length and geosynthetic stiffness on the performance of stone column: 3D DEM-FDM coupled numerical investigation", Comput. Geotech., 132, 103993. https://doi.org/10.1016/j.compgeo.2020.103993.
  84. Xue, J., Liu, Z. and Chen, J. (2019), "Triaxial compressive behaviour of geotextile encased stone columns", Comput. Geotech., 108, 53-60. https://doi.org/10.1016/j.compgeo.2018.12.010.
  85. Yoo, C. (2010), "Performance of geosynthetic-encased stone columns in embankment construction: numerical investigation", J. Geotech. Geoenviron. Eng., 136(8), 1148-1160. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000316.
  86. Yoo, C. and Lee, D. (2012), "Performance of geogrid-encased stone columns in soft ground: full-scale load tests", Geosynthetics Int., 19(6), 480-490. https://doi.org/10.1680/gein.12.00033.
  87. Yun-Min, C., Wei-Ping, C. and Ren-Peng, C. (2008), "An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments", Geotext. Geomembranes, 26(2), 164-174. https://doi.org/10.1016/j.geotexmem.2007.05.004.
  88. Zhou, Y. and Kong, G. (2019), "Deformation analysis of a geosynthetic-encased stone column and surrounding soil using cavity-expansion model", Int. J. Geomechanics, 19(5), 04019036. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001418.
  89. Zhou, Y. and Kong, G. (2019), "Deformation analysis of geosynthetic-encased stone column-supported embankment considering radial bulging", Int. J. Geomechanics, 19(6), 04019057. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001426.
  90. Zhang, Y., Chan, D. and Wang, Y. (2012), "Consolidation of composite foundation improved by geosynthetic-encased stone columns", Geotext. Geomembranes, 32, 10-17. https://doi.org/10.1016/j.geotexmem.2011.10.006.