DOI QR코드

DOI QR Code

Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study

  • Mahmoud Ghazavi (Faculty of Civil Engineering, K.N. Toosi University of Technology) ;
  • Marzieh Norouzi (Faculty of Civil Engineering, K.N. Toosi University of Technology) ;
  • Pezhman Fazeli Dehkordi (Department of Civil Engineering, Shahrekord Branch, Islamic Azad University)
  • 투고 : 2022.05.04
  • 심사 : 2023.02.27
  • 발행 : 2023.03.25

초록

In practice, the interference influence caused by adjacent footings of structures on geo-reinforced loose soil has a considerable impact on their behavior. Thus, the goal of this study is to evaluate the behavior of two strip footings in close proximity on both geocell and geogrid reinforced soil with different reinforcement layers. Geocell was made from geogrid material used to compare the performance of cellular and planar reinforcement on the bearing pressure of twin footings. Extensive experimental tests have been performed to attain the optimum embedment depth and vertical distance between reinforcement layers. Particle image velocimetry (PIV) analysis has been conducted to monitor the deformation, tilting and movement of soil particles beneath and between twin footings. Results of tests and PIV technique were verified using finite element modeling (FEM) and the results of both PIV and FEM were used to utilize failure mechanisms and influenced shear strain around the loading region. The results show that the performance of twin footings on geocell-reinforced sand at allowable and ultimate settlement ranges are almost 4% and 25% greater than the same twin footings on the same geogrid-reinforced sand, respectively. By increasing the distance between twin footings, soil particle displacements become smaller than the settlement of the foundations.

키워드

참고문헌

  1. Abu-Farsakh, M.Y., Gu, J., Voyiadjis, G. and Tao, M. (2007), "Numerical parametric study of strip footing on reinforced embankment soils", Transport. Res. Record, 2004(1), 132-140. https://doi.org/10.3141/2004-14.
  2. Adams, M.T. and Collin, J.G. (1997), "Large model spread footing load tests on geosynthetic reinforced soil foundations", J. Geotech. Geoenviron. Eng., 123(1), 66-72. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:1(66).
  3. Adrian, R.J. (1991), "Particle-imaging techniques for experimental fluid mechanics", Annu. Rev. Fluid Mech., 23, 261-304. https://doi.org/10.1146/annurev.fl.23.010191.001401.
  4. Alimardani Lavasan, A. and Ghazavi, M. (2012), "Behavior of closely spaced square and circular footings on reinforced sand", Soils Found., 52(1), 160-167. https://doi.org/10.1016/j.sandf.2012.01.006.
  5. Alimardani Lavasan, A. and Ghazavi, M. (2016), "Failure mechanism and soil deformation pattern of soil beneath interfering square footings", Int. J. Numer. Method. Civil Eng., 1(2), 48-56. https://doi.org/ 10.29252/nmce.1.2.48.
  6. Alimardani Lavasan, A., Ghazavi, M. and Schanz, T. (2017), "Analysis of interfering circular footings on reinforced soil by physical and numerical approaches considering strain-dependent stiffness", Int. J. Geomech., 17(11), 4017096-4017096. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000992.
  7. Amar, S., Baguelin, F., Canepa, Y. and Frank, R. (1994), "Experimental study of the settlement of shallow foundations", Vertical and horizontal deformations of foundations and embankments, 1602-1610.
  8. Arenson, L.U., Sego, D.C. and Take, W.A. (2007), "Measurement of ice lens growth and soil consolidation during frost penetration using particle image velocimetry (PIV)", Proceedings of the 60th Canadian Geotechnical Conference.
  9. Arvin, M.R., Heidari Sooreshjani, M. and Khademhosseini, A. (2021), "Behaviour of geocell-reinforced strip footings on slopes", Geomech. Geoeng., 17(4), 1-17. https://doi.org/10.1080/17486025.2021.1912404
  10. ASTM D6637 (2011), "Standard test method for determining tensile properties of geogrids by the single or Multi-Rib Tensile Method", ASTM International.
  11. ASTM D2487 (2011), "Standard practice for classification of soils for engineering purposes (unified soil classification system)", ASTM International.
  12. ASTM D7181 (2011), "Method for consolidated drained triaxial compression test for soils", ASTM International.
  13. Biswas, G., Biswas, N. and Ghosh, P. (2018), "Interaction of adjacent strip footings on reinforced soil using upper-bound limit analysis". Geosynthetics Int., 25(6), 599-611. https://doi.org/10.1680/jgein.18.00020.
  14. Binquet, J. and Lee, L.K. (1975), "Bearing capacity tests on reinforced earth slabs", J. Geotech. Eng. Div., 101(12), 1241-1255. https://doi.org/10.1061/AJGEB6.0000219.
  15. Boufarh, R., Abbeche, K. and Abdi, A. (2019), "Experimental investigation of interference between adjacent footings on layered cohesionless soil", Soil Mech. Found. Eng., 56, 128-135. https://doi.org/10.1007/s11204-019-09580-z
  16. Braim, K.S., Ahmad, S.N.A.S., Rashid, A.S.A. and Mohamad, H. (2016), "Strip footing settlement on sandy soil due to eccentricty load", Int. J. Geomate, 11, 2741-2746. https://doi.org/10.21660/2016.27.1344
  17. Brinkgreve, R.B.J., Swolfs, W.M. and Engin, E. (2020), Plaxis 2d user's manuals.
  18. Buckingham, E. (1914), "On physically similar systems; illustrations of the use of dimensional equations", Phys. Rev., 4, 345-345. https://doi.org/10.1103/PhysRev.4.345.
  19. Bush, D.I., Jenner, C.G. and Bassett, R.H. (1990), "The design and construction of geocell foundation mattresses supporting embankments over soft grounds", Geotext. Geomembranes, 9(1), 83-98. https://doi.org/10.1016/0266-1144(90)90006-X.
  20. Das, B.M. and Larbi-Cherif, S. (1983a), "Bearing capacity of two closely spaced shallow foundations on sand", Soils Found., 23(1), 1-7. https://doi.org/10.3208/sandf1972.23.1.
  21. Das, B.M. and Larbi-Cherif, S. (1983b), "Ultimate bearing capacity of closely spaced strip foundations", TRB Transp Res Rec, 945, 37-39.
  22. Dash, S.K., Sireesh, S. and Sitharam, T.G. (2003b), "Model studies on circular footing supported on geocell reinforced sand underlain by soft clay", Geotext. Geomembranes, 21(4), 197-219. https://doi.org/10.1016/S0266-1144(03)00017-7.
  23. Dash, S.K., Sireesh, S. and Sitharam, T.G. (2003a), "Behaviour of geocell-reinforced sand beds under circular footing", P. I. Civil Eng. -Ground Improvement, 7(3), 111-115. https://doi.org/10.1680/grim.2003.7.3.111.
  24. Dash, S.K., Krishnaswamy, N.R. and Rajagopal, K. (2001), "Bearing capacity of strip footings supported on geocell-reinforced sand", Geotext. Geomembranes, 19(4), 235-256. https://doi.org/10.1016/S0266-1144(01)00006-1.
  25. Fakher, A. and Jones, C.J. (1996), "Discussion: bearing capacity of rectangular footings on geogrid-reinforced sand", J. Geotech. Eng., 122(4), 326-327. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(326).
  26. Fazeli Dehkordi, P., Karim., U.F.A., Ghazavi, M. and Ganjian, N. (2019a), "Stochastic analysis of the capacity of two parallel footings on a thin sand layer", P. I. Civil Eng.-Geotech. Eng., 172(4), 355-364. https://doi.org/10.1680/jgeen.18.00094.
  27. Fazeli Dehkordi, P., Ghazavi, M., Ganjian, N. and Karim, U.F.A. (2019b), "Effect of geocell-reinforced sand base on bearing capacity of twin circular footings", Geosynthetics Int., 26(3), 224-236. https://doi.org/10.1680/jgein.19.00047.
  28. Fazeli Dehkordi, P. and Karim, U.F.A. (2020), "Behaviour of circular footings confined by rigid base and geocell reinforcement", Arabian J. Geosci., 13, 1-12. https://doi.org/10.1007/s12517-020-06092-1.
  29. Fazeli Dehkordi, P., Ghazavi, M. and Ganjian, N. (2021a), "Evaluation behavior of circular footing located on sand bed reinforced with geocell", Amirkabir J. Civil Eng., 53(5), 411-414. https://doi.org/10.22060/CEEJ.2020.17159.6479.
  30. Fazeli Dehkordi, P., Ghazavi, M. and Karim, U.F.A. (2021b), "Bearing capacity-relative density behavior of circular footings resting on geocell-reinforced sand", Eur. J. Environ. Civil Eng., 26(11), 5088-5112. https://doi.org/10.1080/19648189.2021.1884901.
  31. Fazeli Dehkordi, P., Ghazavi, M., Ganjian, N. and Karim, U.F.A. (2021c), "Parametric study from laboratory tests on twin circular footings on geocell- reinforced sand", Scientia Iranica, Transaction A, Civil Eng., 28(1), 96-108. https://doi.org/10.24200/sci.2019.51471.2208.
  32. Fazeli Dehkordi, P. (2022), "Assessment behavior of cojointed footings system placed on sands encased by geocell reinforcement: experimental study", Amirkabir J. Civil Eng., 54(3), 214-214. https://doi.org/10.22060/ceej.2021.19194.7102.
  33. Fazeli Dehkordi, P., Ghazavi, M., Karim, U.F.A., Valinezhad Torghabeh, N. (2023), "Interacting footings on geo-reinforced soils: A state-of-the-art review", Submitted to Arabian Journal for Science and Engineering (Under review).
  34. Ghazavi, M. and Alimardani Lavasan, A. (2008), "Interference effect of shallow foundations constructed on sand reinforced with geosynthetics", Geotext. Geomembranes, 26(5), 404-415. https://doi.org/10.1016/j.geotexmem.2008.02.003.
  35. Ghazavi, M. and Fazeli Dehkordi, P. (2021), "Interference influence on behavior of shallow footings constructed on soils, past studies to future forecast: A state-of-the-art review", Transport. Geotech., 27, 100502-100502. https://doi.org/10.1016/j.trgeo.2020.100502.
  36. Ghazavi, M., Valinezhad Torghabeh, N., Fazeli Dehkordi, P. (2023), "Analysis of twin circular footings on geocell-reinforced bed using response surface method", Accepted in: International Journal of Geomechanics.
  37. Ghalehjough, B.K., Akbulut, S. and Celik, S. (2018), "Effect of particle roundness and morphology on the shear failure mechanism of granular soil under strip footing", Acta Geotechnica Slovenica, 15, 43-53. https://doi.org/10.18690/actageotechslov.15.1.43-53.2018.
  38. Ghosh, P. and Kumar, P. (2009), "Interference effect of two nearby strip footings on reinforced sand", Contemporary Engineering Sciences, 2, 577-592.
  39. Ghosh, P. and Kumar, S. (2011), "Interference effect of two nearby strip surface footings on cohesionless layered soil", Int. J. Geotech. Eng., 5(1), 87-94. https://doi.org/10.3328/IJGE.2011.05.01.87-94.
  40. Ghosh, P., Basudhar, P.K., Srinivasan, V. and Kunal, K. (2015), "Experimental studies on interference of two angular footings resting on surface of two-layer cohesionless soil deposit", Int. J. Geotech. Eng., 9(4), 422-433. https://doi.org/10.1179/1939787914Y.0000000080.
  41. Gupta, A., Talha, M. and Seemann, W. (2018), "Free vibration and flexural response of functionally graded plates resting on Winkler-Pasternak elastic foundations using nonpolynomial higher-order shear and nor- mal deformation theory", Mech. Adv. Mater. Struct., 25(6), 523-538. https://doi.org/10.1080/15376494.2017.1285459.
  42. Han, J., Yang, X.M., Leshchinsky, D. and Parsons, R.L. (2008), "Behavior of geocell-reinforced sand under a vertical load", J. Transport. Res. Board, 2045(1), 95-101. https://doi.org/10.3141/2045-11.
  43. Yang, X., Han, J., Parsons, R. L. and Leshchinsky, D. (2010), "Three-dimensional numerical modeling of single geocell-reinforced sand", Front. Struct. Civil Eng., 4, 233-240.
  44. Yoo, C. (2001), "Laboratory investigation of bearing capacity behavior of strip footing on geogrid-reinforced sand slope", Geotext. Geomembranes, 19(5), 279-298. https://doi.org/10.1016/S0266-1144(01)00009-7.
  45. Kolbsuzewski, J. (1948), "General investigation of the fundamental factors controlling loose packing of sands", Proceedings of the the 2nd International Conference on Soil Mechanics and Foundation Engineering.
  46. Kumar, A. and Saran, S. (2003), "Closely spaced footings on geogrid reinforced sand", J. Geotech. Geoenviron. Eng., 129(7), 660-664. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(660).
  47. Langhaar, J.L. (1951), "Dimensional analysis and theory of models", John Wiley & Sons, New York, NY.
  48. Lavasan, A.A., Ghazavi, M., von Blumenthal, A. and Schanz, T. (2018), "Bearing capacity of interfering strip footings", J. Geotech. Geoenviron. Eng., 144, 4018003-4018003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001824.
  49. Mabrouki, A., Benmeddour, D., Frank, R. and Mellas, M. (2010), "Numerical study of the bearing capacity for two interfering strip footings on sands", Comput. Geotech., 37(4), 431-439. https://doi.org/10.1016/j.compgeo.2009.12.007.
  50. Marandi, S.M. and Javdanian, H. (2012), "Laboratory studies on bearing capacity of strip interfering shallow foundations supported by geogrid-reinforced sand", Adv. Mater. Res., 472, 1856-1869. https://doi.org/10.4028/www.scientific.net/AMR.472-475.1856.
  51. Matlab. (2007), Computer Software, MathWorks, Natick, MA, USA.
  52. Mei, L., Ni, P., Mei, G. and Zhao, Y. (2021), "Bearing capacity of plane-strain footings under K0 conditions", Arabian J. Geosci., 14(11), 953. https://doi.org/10.1007/s12517-021-07111-5.
  53. Miyamoto, S. and Miyata, Y. (2020), "Bearing capacity mechanism of geocell reinforced soil foundations", Transport. Soil Eng. Cold Reg., 2, 3-12. https://doi.org/10.1007/978-981-15-0454-9_1.
  54. Milligan, G.W.E., Fannin, R.J. and Farrar, D.M. (1986), "Model and full-scale tests of granular layers reinforced with a geogrid", Proceedings of 3rd international conference on geotextiles.
  55. Naderi, E. and Hataf, N. (2014), "Model testing and numerical investigation of interference effect of closely spaced ring and circular footings on reinforced sand", Geotext. Geomembranes, 42(3), 191-200. https://doi.org/10.1016/j.geotexmem.2013.12.010.
  56. Ni, P., Song, L., Mei, G. and Zhao, Y. (2018), "Predicting excavation-induced settlement for embedded footing: Case study". Int. J. Geomech., 18(4), 05018001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001107.
  57. Oliaei, M. and Kouzegaran, S. (2017), "Efficiency of cellular geosynthetics for foundation reinforcement", Geo- Text. Geomembranes, 45(2), 11-22. https://doi.org/10.1016/j.geotexmem.2016.11.001.
  58. O'loughlin, C.D. and Lehane, B.M. (2010), "Nonlinear cone penetration test-based method for predicting footing settlements on sand", J. Geotech. Geoenviron. Eng., 136(3), 409-416. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000228.
  59. Pokharel, S.K., Han, J., Leshchinsky, D., Parsons, R.L. and Halahmi, I. (2010), "Investigation of factors influencing behavior of single geocell-reinforced bases under static loading", Geotext. Geomembranes, 28(6), 570-578. https://doi.org/10.1016/j.geotexmem.2010.06.002.
  60. Rea, C. and Mitchell, J.K. (1978), "Sand reinforcement using paper grid cells", ASCE Spring Convention and Exhibit, Pittsburgh, PA.
  61. Schmudderich, C., Alimardani Lavasan, A., Tschuchnigg, F. and Wichtmann, T. (2020), "Behavior of nonidentical differently loaded interfering rough footings", J. Geotech. Geoenviron. Eng., 146(6), 4020041-4020041. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002255.
  62. Schmudderich, C., Alimardani Lavasan, A. Tschuchnigg, F. and Wichtmann, T. (2020), "Bearing capacity of a strip footing placed next to an existing footing on frictional soil", Soils Found., 60(1), 229-238. https://doi.org/10.1016/j.sandf.2020.03.002.
  63. Shadmand, A., Ghazavi, M. and Ganjian, N. (2018), "Load-settlement characteristics of large-scale square footing on sand reinforced with opening geocell reinforcement", Geotext. Geomembranes, 46(3), 319-326. https://doi.org/10.1016/j.geotexmem.2018.01.001.
  64. Sitharam, T.G. and Sireesh, S. (2006), "Effects of base geogrid on geocell-reinforced foundation beds", Geomech. Geoeng., 1(3), 207-216. https://doi.org/10.1080/17486020600900596.
  65. Srinivasan, V. and Ghosh, P. (2013), "Experimental investigation on interaction problem of two nearby circular footings on layered cohesionless soil", Geomech. Geoeng., 8(2), 97-106. https://doi.org/10.1080/17486025.2012.695401.
  66. Srokosz, P.E., Bujko, M., Bochenska, M. and Ossowski, R. (2021), "Optical flow method for measuring deformation of soil specimen subjected to torsional shearing", Measurement, 174, 109064-109064. https://doi.org/10.1016/j.measurement.2021.109064.
  67. Stuart, J.G. (1962), "Interference between foundations, with special reference to surface footings in sand", Geotechnique, 12(1), 15-22. https://doi.org/10.1680/geot.1962.12.1.15.
  68. Vesic, A.S. (1973), "Analysis of ultimate loads of shallow foundation", J. Soil Mech. Found. Div. ASCE, 99(1), 45-73. https://doi.org/10.1061/JSFEAQ.0001846.
  69. White, D.J. and Take, W.A. (2002), GeoPIV: Particle Image Velocimetry (PIV) software for use in geotechnical testing.
  70. White, D.J., Take, W.A. and Bolton, M.D. (2003), "Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry". Geotechnique, 53(7), 619-632. https://doi.org/10.1680/geot.2003.53.7.619.