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INTEGRAL CURVES CONNECTED WITH A FRAMED

CURVE IN 3-SPACE

Mustafa Düldül∗ and Zeynep Bülbül

Abstract. In this paper, we define some integral curves connected with

a framed curve in Euclidean 3-space. These curves include framed gen-

eralized principal-direction curve, framed generalized binormal-direction
curve, framed principal-donor curve and framed Darboux-direction curve.

We obtain some relations between the framed curvatures of new defined

framed curves and framed curvatures of given framed curve. By using the
obtained relationships we give some characterizations for such curves. We

also give methods for constructing framed helix and framed slant helix
from planar curves.

1. Introduction

Curves in Euclidean 3-space E3 have many applications since they may be
considered as paths of moving objects. Among these curves, regular ones are
the most studied. There exist in literature not only different types of curves
but also several connected curves for such curves [6, 8, 10, 11]. Among regular
curves, helical curves are most remarkable. Choi and Kim [2] introduce some
connected curves of a given Frenet curve and they give some characterizations
for these curves. Inspired by this work, Macit and Düldül [7] define some new
connected curves of a Frenet curve in E3 and E4.

Given a regular curve α in E3 with non-vanishing curvature, i.e. α′ ×
α′′ ̸= 0, it is possible to define its Frenet frame and curvatures. However, a
curve in E3 may have some singular points. Since tangent vector vanishes at
singular points, we can not define its Frenet frame at such points. In 2016,
as a generalization of regular curves, a new type of curve has been defined for
studying the curves with singular points and such a curve has been called as
framed curve [4]. In 2017, Fukunaga and Takahashi construct a framed curve
such that the image of the framed base curve coincides with the image of a
given smooth curve under a condition [3]. In 2019, to study rectifying curves
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with singular points, Wang et al. [12] define framed rectifying curves and
they give characterization for such curves. They also define framed helix and
obtain the relationship between framed helices and framed rectifying curves.
In 2020, Honda and Takahashi [5] define Bertrand and Mannheim curves of
framed curves in E3. Recently, Okuyucu and Canbirdi [9] define framed slant
helix and give its characterization.

In this paper, we define some integral curves connected with a framed
curve in Euclidean 3-space. These curves include framed generalized principal-
direction curve, framed generalized binormal-direction curve, framed principal-
donor curve, and framed Darboux-direction curve. We obtain some relations
between the framed curvatures of new defined framed curves and framed cur-
vatures of given framed curve. By using the obtained relationships we give
some characterizations for such curves. We also give methods for constructing
framed helix and framed slant helix from planar curves.

2. Preliminaries

Let β : I ⊂ R → E3 be any curve. If the tangent vector of a regular curve β
is linearly independent with its curvature vector along the curve, we can frame
it via its Frenet frame or any other adapted frames [1]. However, if β has some
singular points, then Frenet frame cannot be defined at those points. In this
case, such a curve can be framed by the following method (see, e.g. [4, 12, 13]):

Let us consider the set

∆2 = {v = (m1,m2) ∈ R3 × R3 | ⟨mℓ,mr⟩ = δℓr, ℓ, r = 1, 2}.
It is clear that, if v = (m1,m2) ∈ ∆2, then m = m1 ×m2 is a unit vector in R3.

Definition 2.1. Let β : I ⊂ R → E3 be any curve, and v = (m1,m2) ∈ ∆2.
If ⟨β′(ℓ),m1(ℓ)⟩ = 0 and ⟨β′(ℓ),m2(ℓ)⟩ = 0, then (β,v) : I → E3×∆2 is defined
as a framed curve [4].

Let us consider the framed curve (β,v) : I → E3 × ∆2 and let m(ℓ) =
m1(ℓ)×m2(ℓ). In this case, the frame {m1,m2,m} along β has its Frenet-type
formula:  m′

1(ℓ) = r1(ℓ)m2(ℓ) + r2(ℓ)m(ℓ),
m′

2(ℓ) = −r1(ℓ)m1(ℓ) + r3(ℓ)m(ℓ),
m′(ℓ) = −r2(ℓ)m1(ℓ)− r3(ℓ)m2(ℓ).

We also have

(2.1) β′(ℓ) = f(ℓ)m(ℓ)

with a smooth function f : I → R. The authors define the functions
(
r1(ℓ), r2(ℓ),

r3(ℓ), f(ℓ)
)
as curvature of β [4]. It is clear from (2.1) that ℓ0 is a singular point

of β ⇔ f(ℓ0) = 0.
The existence theorem and uniqueness theorem of framed curves have been

proved in [4].
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Let us consider a framed curve (β,m1,m2) : I → E3 × ∆2 with its cur-
vature

(
r1(ℓ), r2(ℓ), r3(ℓ), f(ℓ)

)
. In [12], the authors define an adapted frame

{m, m̄1, m̄2} by using[
m̄1(ℓ)
m̄2(ℓ)

]
=

[
cosϕ(ℓ) − sinϕ(ℓ)
sinϕ(ℓ) cosϕ(ℓ)

] [
m1(ℓ)
m2(ℓ)

]
.

This frame has its Frenet-type formula as

(2.2)

 m′(ℓ)
m̄′

1(ℓ)
m̄′

2(ℓ)

 =

 0 g(ℓ) 0
−g(ℓ) 0 h(ℓ)
0 −h(ℓ) 0

 m(ℓ)
m̄1(ℓ)
m̄2(ℓ)

 .
It is easy to verify that (β, m̄1, m̄2) : I → E3×∆2 is also a framed curve, where

m̄(ℓ) = m̄1(ℓ)× m̄2(ℓ) = m1(ℓ)×m2(ℓ) = m(ℓ),

m(ℓ) is called the generalized tangent vector, m̄1(ℓ) is the generalized principal
normal, and m̄2(ℓ) is the generalized binormal vector of the framed curve,
respectively; and the functions

(
g(ℓ), h(ℓ), f(ℓ)

)
are defined as framed curvature

of β(ℓ) with g(ℓ) = ||m′(ℓ)|| > 0 and h(ℓ) = r1(ℓ)− ϕ′(ℓ).

Definition 2.2 (Framed helix). If the generalized tangent vector m of a
framed curve makes a constant angle with a fixed direction, then it is called as
a framed helix [12].

Theorem 2.3. A necessary and sufficient condition for a framed curve to
be a framed helix is

h(ℓ)

g(ℓ)
= ∓ cotψ(ℓ), ψ = constant,

where
(
g(ℓ), h(ℓ), f(ℓ)

)
denotes its framed curvature and g(ℓ) > 0. [12].

Definition 2.4 (Framed slant helix). If the generalized principal normal
vector m̄1 of a framed curve makes a constant angle with a fixed direction, then
it is called as a framed slant helix [9].

Theorem 2.5. A necessary and sufficient condition for a framed curve to
be a framed slant helix is

H ′

g
(
1 +H2

) 3
2

= constant, H(ℓ) =
h(ℓ)

g(ℓ)
,

where
(
g(ℓ), h(ℓ), f(ℓ)

)
denotes its framed curvature and g(ℓ) > 0. [9].

3. Framed direction curves

In this section, we define some integral curves connected with a given framed
curve.
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Let us consider a framed curve (β, m̄1, m̄2) : I → E3×∆2, and let
(
g(ℓ), h(ℓ),

f(ℓ)
)
denote its framed curvature, where g(ℓ) > 0.

Let us consider the vector field

F(ℓ) = c1(ℓ)m̄1(ℓ) + c2(ℓ)m̄2(ℓ) + c3(ℓ)m̄(ℓ),

where m̄(ℓ) = m̄1(ℓ) × m̄2(ℓ) = m(ℓ) and the functions c1, c2, c3 defined on I

satisfy
3∑

i=1

c2i = 1.

Now, we define some new framed curves connected with the framed curve
β as following:

Definition 3.1. An integral curve of the vector field f(ℓ)F(ℓ) is called as
framed F-direction curve of β.

Definition 3.2. An integral curve of the vector field f(ℓ)m̄1(ℓ) is called as
framed generalized principal-direction curve of β, and an integral curve of the
vector field f(ℓ)m̄2(ℓ) is called as framed generalized binormal-direction curve
of β.

Remark 3.3. Note that an integral curve of the vector field f(ℓ)m(ℓ) is
nothing but β(ℓ) up to a translation. It is known that the integral curve is
unique with its initial point.

Proposition 3.4. Let (β, m̄1, m̄2) be a framed curve with its curvature(
g(ℓ), h(ℓ), f(ℓ)

)
, g(ℓ) > 0 and β̃ be an F-direction curve of β, where F(ℓ) =

c1(ℓ)m̄1(ℓ) + c2(ℓ)m̄2(ℓ) + c3(ℓ)m̄(ℓ). Then, β is a framed generalized principal-

direction curve of β̃ up to a translation if and only if

(3.1) c1(ℓ) = cos
(∫

h(ℓ)dℓ
)
, c2(ℓ) = − sin

(∫
h(ℓ)dℓ

)
, c3(ℓ) = 0.

Proof. Since β̃ is an integral curve of f(ℓ)F(ℓ), we have β̃′(ℓ) = f(ℓ)F(ℓ). Let

a1(ℓ) denote the generalized principal normal of β̃. Thus (β̃, a1, a2) is a framed
curve with a2(ℓ) = F(ℓ)× a1(ℓ).

(⇒) : Let us assume that β be a framed generalized principal-direction curve

of β̃. Then, according to definition 3.2, we may write β′(ℓ) = f(ℓ)a1(ℓ). On
the other hand, since β′(ℓ) = f(ℓ)m(ℓ), we obtain a1(ℓ) = m(ℓ) which yields
c3(ℓ) = 0. If we use

(3.2) F(ℓ) = c1(ℓ)m̄1(ℓ) + c2(ℓ)m̄2(ℓ), a2(ℓ) = c2(ℓ)m̄1(ℓ)− c1(ℓ)m̄2(ℓ),

we find

(3.3) m̄1(ℓ) = c1(ℓ)F(ℓ) + c2(ℓ)a2(ℓ), m̄2(ℓ) = c2(ℓ)F(ℓ)− c1(ℓ)a2(ℓ).

If we differentiate the first equation of (3.2), and use c21 + c22 = 1 and (3.3), we
have

F′(ℓ) = (c′1(ℓ)c2(ℓ)− c1(ℓ)c
′
2(ℓ)− h(ℓ)) a2(ℓ)− c1(ℓ)g(ℓ)a1(ℓ).
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Thus, according to (2.2), we obtain

c′1(ℓ)c2(ℓ)− c1(ℓ)c
′
2(ℓ)− h(ℓ) = 0.

Let c1(ℓ) > 0. Then, differentiating c1(ℓ) =
√
1− c22(ℓ) and substituting the

result into the last equation yields

c′2(ℓ) = −h(ℓ)
√

1− c22(ℓ)

whose solution is obtained as c2(ℓ) = − sin
( ∫

h(ℓ)dℓ
)
. Hence, we get c1(ℓ) =

cos
( ∫

h(ℓ)dℓ
)
.

(⇐) : Let us assume that the equations in (3.1) hold. In this case, we may
write

β̃′(ℓ) = f(ℓ)

{
cos
(∫

h(ℓ)dℓ
)
m̄1(ℓ)− sin

(∫
h(ℓ)dℓ

)
m̄2(ℓ)

}
from which we have

(
β̃,m,− sin

( ∫
h(ℓ)dℓ

)
m̄1 − cos

( ∫
h(ℓ)dℓ

)
m̄2

)
is a framed

curve. Thus, β is a framed generalized principal-direction curve of β̃ as desired.

If we consider the proof given above, we also obtain:

Corollary 3.5. The framed curvature
(
p(ℓ), q(ℓ), f(ℓ)

)
of β̃ is obtained as

p(ℓ) = g(ℓ)

∣∣∣∣cos(∫ h(ℓ)dℓ
)∣∣∣∣ , q(ℓ) = −g(ℓ) sin

(∫
h(ℓ)dℓ

)
.

We may give the following definition for framed curves as given for Frenet
curves in [2]:

Definition 3.6. An integral curve of the vector field

f(ℓ)

{
cos
(∫

h(ℓ)dℓ
)
m̄1(ℓ)− sin

(∫
h(ℓ)dℓ

)
m̄2(ℓ)

}
is called as framed principal-donor curve of the framed curve (β, m̄1, m̄2).

3.1. Framed generalized principal-direction curve

Let us now examine the framed generalized principal-direction curves and
give some properties.

Let us consider a framed curve (β, m̄1, m̄2) : I → E3 ×∆2 with its framed

curvature
(
g(ℓ), h(ℓ), f(ℓ)

)
, g(ℓ) > 0. If β̃p denotes the framed generalized

principal-direction curve of β, we have by its definition

β̃′
p(ℓ) = f(ℓ)m̄1(ℓ).
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Then, it is clearly seen that (β̃p, m̄, m̄p) : I → E3 ×∆2 denotes a framed curve,
where m̄p = −m̄2. Let us define

(3.4)

[
˜̄m(ℓ)
˜̄mp(ℓ)

]
=

[
cos ξ(ℓ) − sin ξ(ℓ)
sin ξ(ℓ) cos ξ(ℓ)

] [
m̄(ℓ)
m̄p(ℓ)

]
,

where ξ(ℓ) is a smooth function. Using (3.4), we have

˜̄m1(ℓ) = ˜̄m(ℓ)× ˜̄mp(ℓ) = m̄2(ℓ)× m̄(ℓ) = m̄1(ℓ)

and using (2.2) we obtain

˜̄m′(ℓ) = ξ′(ℓ) cos ξ(ℓ)m̄2(ℓ)−ξ′(ℓ) sin ξ(ℓ)m̄(ℓ)+(g(ℓ) cos ξ(ℓ)−h(ℓ) sin ξ(ℓ))m̄1(ℓ)

and

˜̄m′
p(ℓ) = ξ′(ℓ) sin ξ(ℓ)m̄2(ℓ)+ξ

′(ℓ) cos ξ(ℓ)m̄(ℓ)+(g(ℓ) sin ξ(ℓ)+h(ℓ) cos ξ(ℓ))m̄1(ℓ).

We assume that ξ satisfies

(3.5) g(ℓ) sin ξ(ℓ) + h(ℓ) cos ξ(ℓ) = 0,

i.e.

(3.6) g(ℓ) = −ρ(ℓ) cos ξ(ℓ), h(ℓ) = ρ(ℓ) sin ξ(ℓ).

Then we obtain

˜̄m′
1(ℓ) = m̄′

1(ℓ) = −g(ℓ)m(ℓ) + h(ℓ)m̄2(ℓ) = ρ(ℓ) ˜̄m(ℓ),

˜̄m′
p(ℓ) = ξ′(ℓ) ˜̄m(ℓ),

˜̄m′(ℓ) = −ξ′(ℓ) ˜̄mp(ℓ)− ρ(ℓ) ˜̄m1(ℓ).

Thus, the Frenet-type formula of the adapted frame { ˜̄m1, ˜̄m, ˜̄mp} of β̃p is ob-
tained as  ˜̄m′

1(ℓ)
˜̄m′(ℓ)
˜̄m′
p(ℓ)

 =

 0 ρ(ℓ) 0
−ρ(ℓ) 0 σ(ℓ)
0 −σ(ℓ) 0

 ˜̄m1(ℓ)
˜̄m(ℓ)
˜̄mp(ℓ)

 .
This means that the framed curvature of β̃p is given by (ρ(ℓ), σ(ℓ), f(ℓ)), where
σ(ℓ) = −ξ′(ℓ). Hence, we may give the following:

Proposition 3.7. Let (β, m̄1, m̄2) : I → E3 × ∆2 be a framed curve, and(
g(ℓ), h(ℓ), f(ℓ)

)
denote its framed curvature with g(ℓ) > 0. Then the framed

curvature (ρ(ℓ), σ(ℓ), f(ℓ)) of framed generalized principal-direction curve β̃p of
β can be expressed with

(3.7) ρ(ℓ) =
√

g2(ℓ) + h2(ℓ), σ(ℓ) =
g2(ℓ)

g2(ℓ) + h2(ℓ)

(
h(ℓ)

g(ℓ)

)′

.
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Proof. If we use (3.6), we obtain g2(ℓ)+h2(ℓ) = ρ2, i.e. ρ(ℓ) =
√
g2(ℓ) + h2(ℓ).

(3.6) yields also

(3.8)

{
g′(ℓ) = −ρ′(ℓ) cos ξ(ℓ) + ξ′(ℓ)ρ(ℓ) sin ξ(ℓ),
h′(ℓ) = ρ′(ℓ) sin ξ(ℓ) + ξ′(ℓ)ρ(ℓ) cos ξ(ℓ).

If we use (3.6) and (3.8), we find

g2(ℓ)

g2(ℓ) + h2(ℓ)

(
h(ℓ)

g(ℓ)

)′

= −ξ′(ℓ) = σ(ℓ)

which completes the proof.

Corollary 3.8. If we consider Definition 3.6, β is a framed principal-donor
curve of β̃p. Thus, by using Corollary 3.5, we have

g(ℓ) = ρ(ℓ)

∣∣∣∣cos(∫ σ(ℓ)dℓ
)∣∣∣∣ , h(ℓ) = −ρ(ℓ) sin

(∫
σ(ℓ)dℓ

)
.

If we consider Proposition 1 of [12], we have:

Proposition 3.9. Let (β, m̄1, m̄2) : I → E3 × ∆2 be a framed curve, and(
g(ℓ), h(ℓ), f(ℓ)

)
denote its framed curvature with g(ℓ) > 0. If β is a regular

curve, then the curvature κ̃(ℓ) and the torsion τ̃(ℓ) of its framed generalized
principal-direction curve can be given by

κ̃(ℓ) =

√
g2(ℓ) + h2(ℓ)

|f(ℓ)|
, τ̃(ℓ) =

g2(ℓ)

f(ℓ)(g2(ℓ) + h2(ℓ))

(
h(ℓ)

g(ℓ)

)′

.

3.2. Framed generalized binormal-direction curve

Let us consider a framed curve (β, m̄1, m̄2) : I → E3 ×∆2 with its framed

curvature
(
g(ℓ), h(ℓ), f(ℓ)

)
, g(ℓ) > 0. If β̃b denotes the framed generalized

binormal-direction curve of β, then, we have

β̃′
b(ℓ) = f(ℓ)m̄2(ℓ).

Then, it is clearly seen that (β̃b, m̄b, m̄) : I → E3 ×∆2 is also a framed curve
whose Frenet-type formula is expressed with m̄′

2(ℓ)
m̄′

b(ℓ)
m̄′(ℓ)

 =

 0 h(ℓ) 0
−h(ℓ) 0 g(ℓ)
0 −g(ℓ) 0

 m̄2(ℓ)
m̄b(ℓ)
m̄(ℓ)

 ,
where m̄b = −m̄1. This means that the framed curvature of framed generalized
binormal-direction curve β̃b is

(
|h(ℓ)|, g(ℓ), f(ℓ)

)
.
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3.3. Framed Darboux-direction curve

In this section, by defining the Darboux vector of a framed curve, we define
its Darboux-direction curve and give its characterization.

Let us consider the framed curve (β, m̄1, m̄2) : I → E3 ×∆2 with its framed
curvature

(
g(ℓ), h(ℓ), f(ℓ)

)
and g(ℓ) > 0.

Let us define the vector field

d(ℓ) = h(ℓ)m̄(ℓ) + g(ℓ)m̄2(ℓ), ∀ℓ ∈ I.

We can easily see that d(ℓ) satisfies

m̄′(ℓ) = d(ℓ)× m̄(ℓ), m̄′
1 = d(ℓ)× m̄1(ℓ), m̄′

2 = d(ℓ)× m̄2(ℓ).

We call d(ℓ) as generalized Darboux vector of the framed curve β. Let

D(ℓ) =
d(ℓ)

||d(ℓ)||
=

1√
g2(ℓ) + h2(ℓ)

{h(ℓ)m̄(ℓ) + g(ℓ)m̄2(ℓ)}.

Now, we define a new framed curve connected with the framed curve β as:

Definition 3.10. Let (β, m̄1, m̄2) : I → E3 × ∆2 denote a framed curve
with the curvature

(
g(ℓ), h(ℓ), f(ℓ)

)
and g(ℓ) > 0. We define an integral curve

of the vector field f(ℓ)D(ℓ) as framed generalized Darboux-direction curve of
β.

Remark 3.11. We may write D(ℓ) as

D(ℓ) =
1√

1 +
(

h(ℓ)
g(ℓ)

)2
{
h(ℓ)

g(ℓ)
m̄(ℓ) + m̄2(ℓ)

}
.

Thus, D(ℓ) is a constant vector for a framed helix, since D′(ℓ) = 0, ∀ℓ ∈ I.

Proposition 3.12. Let (β, m̄1, m̄2) : I → E3 ×∆2 denote a framed curve
which is not a framed helix with the framed curvature

(
g(ℓ), h(ℓ), f(ℓ)

)
and

g(ℓ) > 0. The framed curvature (ζ(ℓ), ϵ(ℓ), f(ℓ)) of framed generalized Darboux-
direction curve of β can be expressed with

(3.9) ζ(ℓ) = ||D′(ℓ)|| = |g(ℓ)h′(ℓ)− g′(ℓ)h(ℓ)|
g2(ℓ) + h2(ℓ)

, ϵ(ℓ) =
√
g2(ℓ) + h2(ℓ).

Proof. Let βd denote the framed generalized Darboux-direction curve of β.
We may write

β′
d(ℓ) = f(ℓ)D(ℓ).

Let

D̄(ℓ) =
1

g2(ℓ) + h2(ℓ)
(g(ℓ)m̄(ℓ)− h(ℓ)m̄2(ℓ)).
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In this case we have D̄(ℓ)×m̄1(ℓ) = D(ℓ). This means (βd, D̄, m̄1) : I → E3×∆2

is also a framed curve. Then, {D, D̄, m̄1} forms an adapted frame along βd
whose derivatives can be given by using (2.2) as

D′(ℓ) =
g(ℓ)h′(ℓ)− g′(ℓ)h(ℓ)

g2(ℓ) + h2(ℓ)
D̄(ℓ), m̄′

1(ℓ) = −
√

g2(ℓ) + h2(ℓ)D̄(ℓ)

and

D̄′ =
h(ℓ)g′(ℓ)− h′(ℓ)g(ℓ)

g2(ℓ) + h2(ℓ)
D(ℓ) +

√
g2(ℓ) + h2(ℓ)m̄1.

Then, the Frenet-type formula of {D, D̄, m̄1} is obtained as D′(ℓ)
D̄′(ℓ)
m̄′

1(ℓ)

 =

 0 η(ℓ) 0
−η(ℓ) 0 ϵ(ℓ)

0 −ϵ(ℓ) 0

 D(ℓ)
D̄(ℓ)
m̄1(ℓ)

 ,
where

η(ℓ) =
g(ℓ)h′(ℓ)− g′(ℓ)h(ℓ)

g2(ℓ) + h2(ℓ)
, ϵ(ℓ) =

√
g2(ℓ) + h2(ℓ).

This completes the proof.

4. Applications

In this section, we give some applications for framed curves by using the
results obtained in previous section.

Proposition 4.1. The following results are equivalent:
a) A framed curve β is a framed helix.
b) A framed generalized principal-direction curve of β is a planar curve.
c) β is a framed principal-donor curve of a planar curve.

Proof. If we use Proposition 3.7, the framed curvature (ρ(ℓ), σ(ℓ), f(ℓ)) of

framed generalized principal-direction curve β̃p of β satisfies

(4.1)
σ(ℓ)

ρ(ℓ)
=

g2(ℓ)

(g2(ℓ) + h2(ℓ))
3
2

(
h(ℓ)

g(ℓ)

)′

,

where
(
g(ℓ), h(ℓ), f(ℓ)

)
, (g(ℓ) > 0), denotes the framed curvature of β. Thus,

the above equivalences can be easily seen by using (4.1).

If we use (4.1), we can also give the following:

Proposition 4.2. The following results are equivalent:
a) A framed curve β is a framed slant helix.
b) A framed generalized principal-direction curve of β is a framed helix.
c) β is a framed principal donor-curve of a framed helix.
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4.1. Framed helix construction from a planar curve

According to the Proposition 4.1, if a planar curve is given, we can construct
a framed helix as a framed principal-donor curve of the given planar curve as
following:

Let us consider a planar curve α(ℓ) = (α1(ℓ), α2(ℓ), 0). Let

α′(ℓ) = (α′
1(ℓ), α

′
2(ℓ), 0) := f(ℓ)(u1(ℓ), u2(ℓ), 0),

where m(ℓ) := (u1(ℓ), u2(ℓ), 0) is a unit vector. Then, it is easy to see that
(α, m̄1, m̄2) is a framed curve, where

m̄1(ℓ) = (−u2(ℓ), u1(ℓ), 0), m̄2(ℓ) = (0, 0, 1),

and the framed curvature
(
g(ℓ), h(ℓ), f(ℓ)

)
of α is given by

g(ℓ) = ||m′(ℓ)|| =
√

u′1(ℓ) + u′2(ℓ), h(ℓ) = 0.

Also, it is easy to verify that m̄1 corresponds to the generalized principal normal
vector and m̄2 corresponds to the generalized binormal vector of α. Since
h(ℓ) = 0, by using Definition 3.6, a framed principal-donor curve of α, i.e. a
framed helix β, is obtained from

β′(ℓ) = f(ℓ)(λ1m̄1+λ2m̄2) =
(
−λ1α′

2(ℓ), λ1α
′
1(ℓ), λ2f(ℓ)

)
, λ1, λ2 = constant,

as

(4.2) β(ℓ) =
(
− λ1α2(ℓ), λ1α1(ℓ), λ2

∫
f(ℓ)dℓ

)
with λ21 + λ22 = 1 and λ1 ̸= 0. The framed curvature

(
p(ℓ), q(ℓ), f(ℓ)

)
of β is

obtained as

p(ℓ) = λ1g(ℓ) = λ1

√
u′1(ℓ) + u′2(ℓ), q(ℓ) = −λ1g(ℓ) = −λ1

√
u′1(ℓ) + u′2(ℓ).

4.2. Framed slant helix construction from a planar curve

According to the Proposition 4.2, a framed slant helix is a framed principal-
donor curve of a framed helix. Thus, combining this with Proposition 4.1, we
can construct a framed slant helix from a planar curve as following:

Let us consider a framed helix β given by (4.2) obtained from the planar
curve α(ℓ) = (α1(ℓ), α2(ℓ), 0) with

α′(ℓ) = (α′
1(ℓ), α

′
2(ℓ), 0) := f(ℓ)(u1(ℓ), u2(ℓ), 0).

It is clearly seen that the generalized tangent vector of β is

m(ℓ) = (−λ1u2(ℓ), λ1u1(ℓ), λ2)

and the generalized principal normal vector of β is m̄1(ℓ) := (u1(ℓ), u2(ℓ), 0).
Thus, the generalized binormal vector of β is m̄2(ℓ) = (−λ2u2(ℓ), λ2u1(ℓ),−λ1).
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If we use Definition 3.6, a framed principal-donor curve of β, i.e. a framed slant
helix γ constructed from the planar curve α, is obtained from

γ′(ℓ) = f(ℓ)

{
cos
(∫

q(ℓ)dℓ
)
m̄1(ℓ)− sin

(∫
q(ℓ)dℓ

)
m̄2(ℓ)

}
as γ(ℓ) = (γ1(ℓ), γ2(ℓ), γ3(ℓ)), where

γ1(ℓ) =

∫ {
cos
(∫

λ1g(ℓ)dℓ
)
α′
1(ℓ)− λ2 sin

(∫
λ1g(ℓ)dℓ

)
α′
2(ℓ)

}
dℓ,

γ2(ℓ) =

∫ {
cos
(∫

λ1g(ℓ)dℓ
)
α′
2(ℓ) + λ2 sin

(∫
λ1g(ℓ)dℓ

)
α′
1(ℓ)

}
dℓ,

γ3(ℓ) = −λ1
∫

sin
(∫

λ1g(ℓ)dℓ
)
f(ℓ)dℓ.

Proposition 4.3. Let (β, m̄1, m̄2) : I → E3 × ∆2 denote a framed curve
which is not a framed helix and βd denote the framed generalized Darboux-
direction curve of β. Then, β is a framed slant helix if and only if βd is a
framed helix.

Proof. Let
(
g(ℓ), h(ℓ), f(ℓ)

)
denote the framed curvature of framed curve β

which is not a framed helix. Then the framed curvature (ζ(ℓ), ϵ(ℓ), f(ℓ)) of the
framed generalized Darboux-direction curve of β satisfies

ϵ(ℓ)

ζ(ℓ)
=

(
g2(ℓ) + h2(ℓ)

) 3
2

g2(ℓ)

∣∣∣∣(h(ℓ)
g(ℓ)

)′∣∣∣∣
which yields the desired result.

5. Examples

Example 5.1. Let us consider the planar curve α(ℓ) = (ℓ2, ℓ3, 0). Then,
we have

f(ℓ) = ℓ
√
4 + 9ℓ2, g(ℓ) =

6

4 + 9ℓ2
.

Thus, a framed helix β constructed by using α is obtained as

β(ℓ) =

(
−λ1ℓ3, λ1ℓ2,

λ2
27

(
4 + 9ℓ2

)3/2)
.

A framed slant helix γ constructed from α with λ1 = 1, λ2 = 0 is obtained as

γ(ℓ) =

(
4

9

√
4 + 9ℓ2,

1

3
ℓ
√
4 + 9ℓ2 − 4

9
ln

(∣∣3ℓ+√
4 + 9ℓ2

∣∣
2

)
, ℓ3

)
.
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Example 5.2. Let us consider the curve β : (−2π, 2π) → E3 with its
parametric equation

β(ℓ) =

√
6

5

(
sin

(
3ℓ

5

)
− 2

7
sin

(
7ℓ

5

)
− sin ℓ

5
,
cos ℓ

5
− cos

(
3ℓ

5

)
+

2

7
cos

(
7ℓ

5

)
,

2
√
6ℓ

5
−
√
6 sin

(
2ℓ

5

))
.

It is easy to see that the tangent vector vanishes at β(0). (β, m̄1, m̄2) : (−2π, 2π) →
E3 ×∆2 is a framed curve [9], where

m(ℓ) =

(
3

5
sin

(
4ℓ

5

)
+

2

5
sin

(
6ℓ

5

)
,−3

5
cos

(
4ℓ

5

)
− 2

5
cos

(
6ℓ

5

)
,
2
√
6

5
sin

(
ℓ

5

))
,

m̄1(ℓ) =

(
2
√
6

5
cos ℓ,

2
√
6

5
sin ℓ,

1

5

)
,

m̄2(ℓ) =

(
2

5
cos

(
6ℓ

5

)
− 3

5
cos

(
4ℓ

5

)
,
2

5
sin

(
6ℓ

5

)
− 3

5
sin

(
4ℓ

5

)
,
2
√
6

5
cos

(
ℓ

5

))
.

The framed curvature of framed curve (β, m̄1, m̄2) is obtained as

(5.1) g(ℓ) =
2
√
6

5
cos

(
ℓ

5

)
, h(ℓ) =

2
√
6

5
sin

(
ℓ

5

)
,

where β is a framed slant helix [9]. Besides, since β′(ℓ) = f(ℓ)m(ℓ), we obtain

f(ℓ) = ⟨β′(ℓ),m(ℓ)⟩ = 2
√
6

5
sin

(
ℓ

5

)
.

Then, the framed generalized principal-direction curve β̃p of β which satisfies

β̃p(0) =
(

1
5 , 0,−

2
√
6

5

)
is obtained as (see Figure 1)

β̃p(ℓ) =

(
3

5
cos

(
4ℓ

5

)
− 2

5
cos

(
6ℓ

5

)
,
3

5
sin

(
4ℓ

5

)
− 2

5
sin

(
6ℓ

5

)
,−2

√
6

5
cos

(
ℓ

5

))
.

If we use (3.5), we get

cos

(
ℓ

5

)
sin ξ(ℓ) + sin

(
ℓ

5

)
cos ξ(ℓ) = 0,

i.e. sin
(
ξ(ℓ) + ℓ

5

)
= 0 which yields ξ(ℓ) = − ℓ

5 + kπ, k ∈ Z. Then, by using
(3.4) we obtain

˜̄m(ℓ) = (sin ℓ,− cos ℓ, 0) and ˜̄mp(ℓ) =

(
1

5
cos ℓ,

1

5
sin ℓ,−2

√
6

5

)
.
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Figure 1. The curve β (black) and its framed generalized

principal-direction curve β̃p (blue)

Since we also have ˜̄m1(ℓ) = m̄1(ℓ), we find

˜̄m′
1(ℓ) = −2

√
6

5
˜̄m(ℓ), ˜̄m′

p(ℓ) = −1

5
˜̄m(ℓ).

Thus, we obtain the framed curvature (ρ(ℓ), σ(ℓ), f(ℓ)) of the framed curve

(β̃p, ˜̄m, ˜̄mp) as

(5.2) ρ(ℓ) =
2
√
6

5
, σ(ℓ) =

1

5

which yields that, according to the Theorem 2.3, β̃p is a framed helix. The

framed curvature of β̃p given in (5.2) can also be obtained by using (3.7) and
(5.1).

Furthermore, the framed generalized binormal-direction curve β̃b of β which

satisfies β̃b(0) =
(
− 2

√
6

35 , 0,−
6
5

)
is obtained as (see Figure 2)

β̃b(ℓ) =
√
6

(
cos ℓ

5
− 1

5
cos

(
3ℓ

5

)
− 2

35
cos

(
7ℓ

5

)
,
sin ℓ

5
− 1

5
sin

(
3ℓ

5

)
− 2

35
sin

(
7ℓ

5

)
,

−
√
6

5
cos

(
2ℓ

5

))
.
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Figure 2. The curve β (black) and its framed generalized

binormal-direction curve β̃b (green)

On the other hand, the unit generalized Darboux vector of γ is obtained as

D(ℓ) =

(
−1

5
cos ℓ,−1

5
sin ℓ,

2
√
6

5

)
.

Thus, the framed generalized Darboux-direction curve βd of β which satisfies

βd(0) =
(
−

√
6

60 , 0,−
24
5

)
is obtained as (see Figure 3)

βd(ℓ) =

(√
6

30
cos

(
6ℓ

5

)
−

√
6

20
cos

(
4ℓ

5

)
,

√
6

30
sin

(
6ℓ

5

)
−

√
6

20
sin

(
4ℓ

5

)
,−24

5
cos

(
ℓ

5

))
and its framed curvature is obtained as ζ(ℓ) = 1

5 , ϵ(ℓ) =
2
√
6

5 by using (3.9). It
is obvious that βd is a framed helix.

6. Conclusion

Choi and Kim [2] introduce some integral curves connected with a Frenet
curve in Euclidean 3-space. They characterize general helices and slant helices
in terms of their associated curves and also give methods to construct these heli-
cal curves. Motivated by their study, this paper introduces some integral curves
connected with a given framed curve. Framed curve is a generalization of reg-
ular curves with linearly independent condition. We define framed generalized
principal-direction curve, framed generalized binormal-direction curve, framed
principal-donor curve and framed generalized Darboux-direction curve. It is
shown that these new curves are related with framed helix and framed slant
helix. Since helices have applications in science and nature, we also present
methods to construct framed helix and framed slant helix from a planar curve.
Such integral curves can be defined and studied for framed curves in higher
dimensional spaces.
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Figure 3. The curve β (black) and its framed generalized
Darboux-direction curve βd (red)
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