DOI QR코드

DOI QR Code

An evolutionary approach for predicting the axial load-bearing capacity of concrete-encased steel (CES) columns

  • Armin Memarzadeh (Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran) ;
  • Hassan Sabetifar (Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran) ;
  • Mahdi Nematzadeh (Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran) ;
  • Aliakbar Gholampour (College of Science and Engineering, Flinders University)
  • Received : 2022.02.17
  • Accepted : 2023.01.19
  • Published : 2023.03.25

Abstract

In this research, the gene expression programming (GEP) technique was employed to provide a new model for predicting the maximum loading capacity of concrete-encased steel (CES) columns. This model was developed based on 96 CES column specimens available in the literature. The six main parameters used in the model were the compressive strength of concrete (fc), yield stress of structural steel (fys), yield stress of steel rebar (fyr), and cross-sectional areas of concrete, structural steel, and steel rebar (Ac, As and Ar respectively). The performance of the prediction model for the ultimate load-carrying capacity was investigated using different statistical indicators such as root mean square error (RMSE), correlation coefficient (R), mean absolute error (MAE), and relative square error (RSE), the corresponding values of which for the proposed model were 620.28, 0.99, 411.8, and 0.01, respectively. Here, the predictions of the model and those of available codes including ACI ITG, AS 3600, CSA-A23, EN 1994, JGJ 138, and NZS 3101 were compared for further model assessment. The obtained results showed that the proposed model had the highest correlation with the experimental data and the lowest error. In addition, to see if the developed model matched engineering realities and corresponded to the previously developed models, a parametric study and sensitivity analysis were carried out. The sensitivity analysis results indicated that the concrete cross-sectional area (Ac) has the greatest effect on the model, while parameter (fyr) has a negligible effect.

Keywords

References

  1. Ahmad, H., Sheikh, M.N. and Hadi, M.N.S. (2021), "Behavior of GFRP bar-reinforced hollow-core polypropylene fiber and glass fiber concrete columns under axial compression", J. Build. Eng., 44, 103245. https://doi.org/10.1016/j.jobe.2021.103245.
  2. Amar, M.N., Ghriga, M.A., Ouaer, H., Seghier, M.E.A.B., Pham, B.T. and Andersen, P.O. (2020), "Modeling viscosity of CO2 at high temperature and pressure conditions", J. Nat. Gas Sci. Eng., 77, 103271. https://doi.org/10.1016/j.jngse.2020.103271.
  3. Ashraf, M., Iqbal, M.F., Rauf, M., Ashraf, M.U., Ulhaq, A., Muhammad, H. and Liu, Q.F. (2022), "Developing a sustainable concrete incorporating bentonite clay and silica fume: Mechanical and durability performance", J. Clean. Prod., 337, 130315. https://doi.org/10.1016/j.jclepro.2021.130315.
  4. Aval, S.B., Ketabdari, H. and Gharebaghi, S.A. (2017), "Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming", Struct., 12, 13-23. https://doi.org/10.1016/j.istruc.2017.07.002.
  5. Avudaiappan, S., Saavedra Flores, E.I., Araya-Letelier, G., Jonathan Thomas, W.N., Raman, S., Murali, G., Amran, M., Karelina, M., Fediuk, R. and Vatin, N. (2021), "Experimental investigation on composite deck slab made of cold-formed profiled steel sheeting", Metal., 11(2), 229. https://doi.org/10.3390/met11020229.
  6. Azim, I., Yang, J., Farjad Iqbal, M., Faisal Javed, M., Nazar, S., Wang, F. and Liu, Q.F. (2020a), "Semi-analytical model for compressive arch action capacity of RC frame structures", Struct., 27, 1231-1245. https://doi.org/10.1016/j.istruc.2020.06.011.
  7. Azim, I., Yang, J., Iqbal, M.F., Mahmood, Z., Javed, M.F., Wang, F. and Liu, Q.F. (2021), "Prediction of catenary action capacity of RC beam-column substructures under a missing column scenario using evolutionary algorithm", KSCE J. Civil Eng., 25(3), 891-905. https://doi.org/10.1007/s12205-021-0431-0.
  8. Azim, I., Yang, J., Javed, M.F., Iqbal, M.F., Mahmood, Z., Wang, F. and Liu, Q.F. (2020b), "Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming", Struct., 25, 212-228. https://doi.org/10.1016/j.istruc.2020.02.028.
  9. Campian, C., Nagy, Z. and Pop, M. (2015), "Behavior of fully encased steel-concrete composite columns subjected to monotonic and cyclic loading", Procedia Eng., 117, 439-451. https://doi.org/10.1016/j.proeng.2015.08.193.
  10. Chen, C. and Yeh, S. (1996), "Ultimate strength of concrete encased steel composite columns", Proceedings of the Third National Conference on Structural Engineering.
  11. Chen, C.C. and Lin, N.J. (2006), "Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns", J. Constr. Steel Res., 62(5), 424-433. https://doi.org/10.1016/j.jcsr.2005.04.021.
  12. Chen, S. and Wu, P. (2017), "Analytical model for predicting axial compressive behavior of steel reinforced concrete column", J. Constr. Steel Res., 128, 649-660. https://doi.org/10.1016/j.jcsr.2016.10.001.
  13. Chen, Y., Li, W. and Fang, C. (2017), "Performance of partially encased composite beams under static and cyclic bending", Struct., 9, 29-40. https://doi.org/10.1016/j.istruc.2016.09.004.
  14. Design, S. (2007), Detailing for High Strength Concrete in Moderate to High Seismic Applications: ACI Innovation Task Group 4 (ACI ITG 4.3 07), American Concrete Institute, Farmington Hills, MI, USA.
  15. Dundar, C., Tokgoz, S., Tanrikulu, A.K. and Baran, T. (2008), "Behaviour of reinforced and concrete-encased composite columns subjected to biaxial bending and axial load", Build. Environ., 43(6), 1109-1120. https://doi.org/10.1016/j.buildenv.2007.02.010.
  16. El-Tawil, S. and Deierlein, G.G. (1999), "Strength and ductility of concrete encased composite columns", J. Struct. Eng., 125(9), 1009-1019. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:9(1009).
  17. Ellobody, E., Young, B. and Lam, D. (2011), "Eccentrically loaded concrete encased steel composite columns", Thin Wall. Struct., 49(1), 53-65. https://doi.org/10.1016/j.tws.2010.08.006.
  18. EN, B. (2004), 1-1. EN: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization (CEN), Brussels, Belgium.
  19. Ferreira, C. (2001), "Gene expression programming: A new adaptive algorithm for solving problems", Complex Syst., 13(2), 87-129. https://doi.org/10.48550/arXiv.cs/0102027.
  20. Frank, I.E. and Todeschini, R. (1994), The Data Analysis Handbook, Elsevier Science B.V., Amsterdam, The Netherlands.
  21. Gandomi, A.H., Tabatabaei, S.M., Moradian, M.H., Radfar, A. and Alavi, A.H. (2011), "A new prediction model for the load capacity of castellated steel beams", J. Constr. Steel Res., 67(7), 1096-1105. https://doi.org/10.1016/j.jcsr.2011.01.014.
  22. Gandomi, A.H., Yun, G.J. and Alavi, A.H. (2013), "An evolutionary approach for modeling of shear strength of RC deep beams", Mater. Struct., 46(12), 2109-2119. https://doi.org/10.1617/s11527-013-0039-z.
  23. Gencel, O., Oguz, M., Gholampour, A. and Ozbakkaloglu, T. (2021), "Recycling waste concretes as fine aggregate and fly ash as binder in production of thermal insulating foam concretes", J. Build. Eng., 38, 102232. https://doi.org/10.1016/j.jobe.2021.102232.
  24. Gencoglu, M., Uygunoglu, T., Demir, F. and Guler, K. (2012), "Prediction of elastic modulus of steel-fiber reinforced concrete (SFRC) using fuzzy logic", Comput. Concrete, 9(5), 389-402. https://doi.org/10.12989/cac.2022.29.1.015.
  25. Ferreira, C. (2006), Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, Springer Berlin, Heidelberg, Berlin, Germany.
  26. Griffis, L.G. (1992), Load and Resistance Factor Design of W-Shapes Encased in Concrete, American Institute of Steel Construction, Chicago, Illinois, USA.
  27. Guo, W., Crowther, D., Francis, J.A., Thompson, A., Liu, Z. and Li, L. (2015), "Microstructure and mechanical properties of laser welded S960 high strength steel", Mater. Des., 85, 534-548. https://doi.org/10.1016/j.matdes.2015.07.037.
  28. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266.
  29. Huang, Z., Huang, X., Li, W., Zhou, Y., Sui, L. and Liew, J. (2018), "Experimental behaviour of very high-strength concrete-encased steel composite column subjected to axial compression and end moment", Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures 2018, Valencia, Spain, June.
  30. Iqbal, M.F., Javed, M.F., Rauf, M., Azim, I., Ashraf, M., Yang, J. and Liu, Q.F. (2021), "Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming", Sci. Total Environ., 780, 146524. https://doi.org/10.1016/j.scitotenv.2021.146524.
  31. Iqbal, M.F., Liu, Q.F., Azim, I., Zhu, X., Yang, J., Javed, M.F. and Rauf, M. (2020), "Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming", J. Hazard. Mater., 384, 121322. https://doi.org/10.1016/j.jhazmat.2019.121322.
  32. JGJ 94-94 (1995), Technical Code for Building Pile Foundations, Technical Standards of the People's Republic of China, China Academy of Building Research (CABR), Chaoyang, Beijing, China.
  33. Kara, I.F. (2013), "Empirical modeling of shear strength of steel fiber reinforced concrete beams by gene expression programming", Neural. Comput. Appl., 23(3), 823-834. https://doi.org/10.1007/s00521-012-0999-x.
  34. Karimi, A., Nematzadeh, M. and Mohammad-EbrahimzadehSepasgozar, S. (2020), "Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber", Comput. Concrete, 26(6), 467-482. https://doi.org/10.12989/cac.2020.26.6.467.
  35. Karimipour, A., de Brito, J. and Gencel, O. (2021), "Influence of bond-slip on the flexural performance and ductility of steel fibres-reinforced RC beams with lap-spliced bars: Experimental and finite element analysis", Eng. Struct., 249, 113362. https://doi.org/10.1016/j.engstruct.2021.113362.
  36. Kazemi, M., Madandoust, R., Chastre, C., Esfahani, M.R. and Courard, L. (2021), "Numerical study on the flexural behaviour of normal-and high-strength concrete beams reinforced with GFRP bar, using different amounts of transverse reinforcement", Struct., 34, 3113-3124. https://doi.org/10.1016/j.istruc.2021.09.077.
  37. Keshtegar, B. and Seghier, M.E.A.B. (2018), "Modified response surface method basis harmony search to predict the burst pressure of corroded pipelines", Eng. Fail. Anal., 89, 177-199. https://doi.org/10.1016/j.engfailanal.2018.02.016.
  38. Kim, C.S., Park, H.G., Chung, K.S. and Choi, I.R. (2012), "Eccentric axial load testing for concrete-encased steel columns using 800 MPa steel and 100 MPa concrete", J. Struct. Eng., 138(8), 1019-1031. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000533.
  39. Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT press, Cambridge, MA, USA.
  40. Lai, B. and Liew, J.R. (2020), "Axial-moment interaction of high strength concrete encased steel composite columns: Experimental investigation", J. Constr. Steel Res., 175, 106370. https://doi.org/10.1016/j.jcsr.2020.106370.
  41. Lai, B., Liew, J.R., Venkateshwaran, A., Li, S. and Xiong, M. (2020), "Assessment of high-strength concrete encased steel composite columns subject to axial compression", J. Constr. Steel Res., 164, 105765. https://doi.org/10.1016/j.jcsr.2019.105765.
  42. Lai, B., Liew, J.R. and Xiong, M. (2019), "Experimental study on high strength concrete encased steel composite short columns", Constr. Build. Mater., 228, 116640. https://doi.org/10.1016/j.conbuildmat.2019.08.021.
  43. Lai, B., Liew, J.Y. and Li, S. (2018), "Finite element analysis of concrete-encased steel composite columns with off-center steel section", Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures 2018, Valencia, Spain, June.
  44. Li, K.W., Li, Z.Y., Wan, X. and Liu, F. (2015), "Non-linear numerical simulation on hysteretic behavior of SRC columns", Appl. Mech. Mater., 723, 382-386. https://doi.org/10.4028/www.scientific.net/AMM.723.382.
  45. Liang, C.Y., Chen, C.C., Weng, C.C., Yin, S.Y.L. and Wang, J.C. (2014), "Axial compressive behavior of square composite columns confined by multiple spirals", J. Constr. Steel Res., 103, 230-240. https://doi.org/10.1016/j.jcsr.2014.09.006.
  46. Liu, S.W., Liu, Y.P. and Chan, S.L. (2012), "Advanced analysis of hybrid steel and concrete frames: Part 1: Cross-section analysis technique and second-order analysis", J. Constr. Steel Res., 70, 326-336. https://doi.org/10.1016/j.jcsr.2011.09.003.
  47. Liu, Y., Guo, Z., Xu, P. and Jia, L. (2015), "Experimental study on axial compression behavior of core steel reinforced concrete columns", J. Build. Struct., 36(4), 68-74.
  48. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  49. Memarzadeh, A. and Nematzadeh, M. (2021), "Axial compressive performance of steel reinforced fibrous concrete composite stub columns: Experimental and theoretical study", Struct., 34, 2455-2475. https://doi.org/10.1016/j.istruc.2021.08.130.
  50. Memarzadeh, A., Nematzadeh, M. and Ahmadi, M. (2021c), "Compressive performance of steel fiber-reinforced concreteencased steel composite stub columns", Modares Civil Eng. J., 21(3), 189-203.
  51. Memarzadeh, A., Nematzadeh, M. and Jafarzadeh, H. (2021b), "Experimental study on elastic modulus of steel stub columns encased in RC containing steel fibers", J. Struct. Constr. Eng., 8(12), 325-343. https://doi.org/10.22065/jsce.2021.285696.2452.
  52. Memarzadeh, A., Shahmansouri, A.A., Nematzadeh, M. and Gholampour, A. (2021a), "A review on fire resistance of steel-concrete composite slim-floor beams", Steel Compos. Struct., 40(1), 13. http://doi.org/10.12989/scs.2021.40.1.013.
  53. Memarzadeh, A., Shahmansouri Amir, A. and Poologanathan, K. (2022), "A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns", Steel Compos. Struct., 44(3), 309-324. https://doi.org/10.12989/SCS.2022.44.3.309.
  54. Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014.
  55. Munoz, P.R. and Hsu, C.T.T. (1997), "Behavior of biaxially loaded concrete-encased composite columns", J. Struct. Eng., 123(9), 1163-1171. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1163).
  56. Nait Amar, M., Ghriga, M.A., Ben Seghier, M.E.A. and Ouaer, H. (2020), "Prediction of lattice constant of a2xy6 cubic crystals using gene expression programming", The J. Phys. Chem. B, 124(28), 6037-6045. https://doi.org/10.1021/acs.jpcb.0c04259.
  57. Najigivi, A., Nazerigivi, A. and Nejati, H.R. (2017), "Contribution of steel fiber as reinforcement to the properties of cement-based concrete: A review", Comput. Concrete, 20(2), 155-164. https://doi.org/10.12989/cac.2017.20.2.155.
  58. Narayan, K.B. and Venkataramana, K. (2007), "Shape optimization of steel reinforced concrete beams", Comput. Concrete, 4(4), 317-330. https://doi.org/10.12989/cac.2007.4.4.317.
  59. Nematzadeh, M. and Fazli, S. (2020), "Effect of axial loading conditions and confinement type on concrete-steel composite behavior", Comput. Concrete, 25(2), 95-109. https://doi.org/10.12989/cac.2020.25.2.095.
  60. Nematzadeh, M., Hasan-Nattaj, F., Gholampour, A., Sabetifar, H. and Ngo, T.D. (2021), "Strengthening of heat-damaged steel fiber-reinforced concrete using CFRP composites: Experimental study and analytical modeling", Struct., 32, 1856-1870. https://doi.org/10.1016/j.istruc.2021.03.084.
  61. Nematzadeh, M., Karimi, A. and Gholampour, A. (2020a), "Pre-and post-heating behavior of concrete-filled steel tube stub columns containing steel fiber and tire rubber", Struct., 27, 2346-2364. https://doi.org/10.1016/j.istruc.2020.07.034.
  62. Nematzadeh, M., Memarzadeh, A. and Karimi, A. (2020b), "Post-fire elastic modulus of rubberized fiber-reinforced concrete-filled steel tubular stub columns: Experimental and theoretical study", J. Constr. Steel Res., 175, 106310. https://doi.org/10.1016/j.jcsr.2020.106310.
  63. Rahman, M.S., Begum, M. and Ahsan, R. (2016), "Comparison between experimental and numerical studies of fully encased composite columns", Int. J. Struct. Constr. Eng., 10(6), 762-769. https://doi.org/10.5281/zenodo.1339295.
  64. Rahmani, Z., Naghipour, M. and Nematzadeh, M. (2021), "Structural behavior of prestressed self-compacting concrete-encased concrete-filled steel tubes beams", Struct. Concrete, 22(4), 2011-2028. https://doi.org/10.1002/suco.202000184.
  65. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression", Comput. Concrete, 11(2), 149-167. https://doi.org/10.12989/cac.2013.11.2.149.
  66. Ricles, J.M. and Paboojian, S.D. (1994), "Seismic performance of steel-encased composite columns", J. Struct. Eng., 120(8), 2474-2494. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2474).
  67. Rogac, M., Aleksic, S. and Lucic, D. (2020), "Influence of patch load length on resistance of I-girders. Part-I: Experimental research", J. Constr. Steel Res., 175, 106369. https://doi.org/10.1016/j.jcsr.2020.106369.
  68. Sabetifar, H. and Nematzadeh, M. (2021), "An evolutionary approach for formulation of ultimate shear strength of steel fiber-reinforced concrete beams using gene expression programming", Struct., 34, 4965-4976. https://doi.org/10.1016/j.istruc.2021.10.075.
  69. Sabetifar, H., Nematzadeh, M. and Gholampour, A. (2022), "Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression", Comput. Concrete, 29, 15-29. https://doi.org/10.12989/cac.2022.29.1.015.
  70. Sadrossadat, E., Ghorbani, B., Hamooni, M. and Moradpoor Sheikhkanloo, M.H. (2018), "Numerical formulation of confined compressive strength and strain of circular reinforced concrete columns using gene expression programming approach", Struct. Concrete, 19(3), 783-794. https://doi.org/10.1002/suco.201700131.
  71. Seghier, M.E.A.B., Keshtegar, B., Tee, K.F., Zayed, T., Abbassi, R. and Trung, N.T. (2020), "Prediction of maximum pitting corrosion depth in oil and gas pipelines", Eng. Fail. Anal., 112, 104505. https://doi.org/10.1016/j.engfailanal.2020.104505.
  72. Shih, T.H., Chen, C.C., Weng, C.C., Yin, S.Y.L. and Wang, J.C. (2013), "Axial strength and ductility of square composite columns with two interlocking spirals", J. Constr. Steel Res., 90, 184-192. https://doi.org/10.1016/j.jcsr.2013.07.021.
  73. Standard, A. (2009), Concrete Structures. AS-3600, Standards Australia International, Sydney, Australia.
  74. Standard, C. (2004), A23. 3-04: Design of Concrete Structures, Canadian Standards Association, Mississauga, Ontario, Canada.
  75. Standard, N.Z. (2006), Concrete Structures Standard, NZS 3101: 2006. The Design of Concrete Structures, New Zealand Standard, Wellington, New Zealand.
  76. Tsai, K., Lien, Y. and Chen, C. (1996), "Behaviour of axially loaded steel reinforced concrete columns", J. Chin. Inst. Civil Hydra. Eng., 8(4), 535-545.
  77. Wang, G.Y., Zhang, C., Xu, J. and Zhang, D.M. (2020), "Post-fire seismic performance of SRC beam to SRC column frames", Struct., 25, 323-334. https://doi.org/10.1016/j.istruc.2020.03.016.
  78. Wee, T., Chin, M. and Mansur, M. (1996), "Stress-strain relationship of high-strength concrete in compression", J. Mater. Civil Eng., 8(2), 70-76. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:2(70).
  79. Wu, K., Zhai, J., Xue, J., Xu, F. and Zhao, H. (2019), "Experimental study on shear damage and lateral stiffness of transfer column in SRC-RC hybrid structure", Comput. Concrete, 23(5), 335-349. https://doi.org/10.12989/cac.2019.23.5.335.
  80. Yoo, D.Y., Sohn, H.K., Borges, P.H.R., Fediuk, R. and Kim, S. (2020), "Enhancing the tensile performance of ultra-high-performance concrete through strategic use of novel half-hooked steel fibers", J. Mater. Res. Technol., 9(3), 2914-2925. https://doi.org/10.1016/j.jmrt.2020.01.042.
  81. Yu, Q. and Lu, Z. (2009), "Research on the static performance of eccentric steel reinforced concrete column", Build. Struct., 39(6), 34-38.
  82. Zhao, G.T., Wang, C.H., Gao, C.Y. and Wang, C.X. (2006), "Experiment study on the capacity of SRC long column subjected to eccentric compression", J. Baotou Univ. Iron Steel Technol., 25(4), 384-400.
  83. Zhao, X., Wen, F., Chan, T.M. and Cao, S. (2019), "Theoretical stress-strain model for concrete in steel-reinforced concrete columns", J. Struct. Eng., 145(4), 04019009. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002289.
  84. Zhao, X.L., Han, L.H. and Lu, H. (2010), Concrete-Filled Tubular Members and Connections, CRC Press, New York, NY, USA.
  85. Zhu, W., Jia, J., Gao, J. and Zhang, F. (2016), "Experimental study on steel reinforced high-strength concrete columns under cyclic lateral force and constant axial load", Eng. Struct., 125, 191-204. https://doi.org/10.1016/j.engstruct.2016.07.018.
  86. Zhu, W.Q., Meng, G. and Jia, J.Q. (2014), "Experimental studies on axial load performance of high-strength concrete short columns", Proc. Inst. Civil Eng. Struct. Build., 167(9), 509-519. https://doi.org/10.1680/stbu.13.00027.