DOI QR코드

DOI QR Code

Carbonation depth estimation in reinforced concrete structures using revised empirical model and oxygen permeability index

  • Chandra Harshitha (Department of Civil Engineering, Jawaharlal Nehru Technological University) ;
  • Bhaskar Sangoju (Advanced Materials Laboratory, CSIR-Structural Engineering Research Center) ;
  • Ramesh Gopal (Advanced Materials Laboratory, CSIR-Structural Engineering Research Center)
  • Received : 2020.10.10
  • Accepted : 2023.01.13
  • Published : 2023.03.25

Abstract

Corrosion of rebar is one of the major deteriorating mechanisms that affect the durability of reinforced concrete (RC) structures. The increase in CO2 concentration in the atmosphere leads to early carbonation and deterioration due to corrosion in RC structures. In the present study, an attempt has been made to modify the existing carbonation depth prediction empirical model. The modified empirical model is verified from the carbonation data collected from selected RC structures of CSIR-SERC campus, Chennai and carbonation data available from the reported literature on in-situ RC structures. Attempt also made to study the carbonation depth in the laboratory specimens using oxygen permeability index (OPI) test. The carbonation depth measured from RC structures and laboratory specimens are compared with estimated carbonation depth obtained from OPI test data. The modified empirical model shows good correlation with measured carbonation depth from the identified RC structures and the reported RC structures from the literature. The carbonation depth estimated from OPI values for both in-situ and laboratory specimens show lesser percentage of error compared to measured carbonation depth. From the present investigation it can be said that the OPI test is the suitable test method for both new and existing RC structures and laboratory RC specimens.

Keywords

References

  1. Al-Khaiat, H. and Fattuhi, N. (2002), "Carbonation of concrete exposed to hot and arid climate", J. Mater. Civil Eng., 14(2), 97-107. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:2(97).
  2. Ballim, Y. (1993a), "Towards an early-age index for the durability performance of concrete", Conference on: Economic and Durable Construction through Excellence, Dundee, Scotland, September.
  3. Ballim, Y. (1993b), "Curing and the durability of OPC, fly ash and blast-furnace slag concrete", Mater. Struct., 26, 238-244. https://doi.org/10.1007/BF02472617.
  4. Bastidas-Arteaga, E., Chateauneuf, A., Sanchez-Silva, M., Bressolette, P. and Schoefs, F. (2010), "Influence of weather and global warming in chloride ingress into concrete: A stochastic approach", Struct. Saf., 32(4), 238-249. https://doi.org/10.1016/j.strusafe.2010.03.002
  5. Beushaussen, H. and Alexander, M.G. (2008) "The South African durability index tests in an international comparison", J. South African Inst. Civil Eng., 50(1), 25-31.
  6. Broomfield, J.P. (2006), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, 2nd Edition, Taylor & Francis, London, UK.
  7. Buenfeld, N.R. and Yang, R. (2001), On-Site Curing of Concrete Microstructure and Durability, CIRIA, London, UK.
  8. Cho, H.C., Ju, H., Oh, J.Y.,Lee, K.J., Hahm, K.W. and Kim, K.S. (2016), "Estimation of concrete carbonation depth considering multiple influencing factors on deterioration of durability of RC structures", Adv. Mater. Sci. Eng., 2016, 1-18. https://doi.org/10.1155/2016/4814609.
  9. Christian, C.R., Jose, L.C., Juan, H.M. and Willian, A.A. (2020), "Algorithms to measure carbonation depth in concrete structures sprayed with a phenolphthalein solution", Adv. Concrete Constr., 9(3), 257-265. https://doi.org/10.12989/acc.2020.9.3.257.
  10. Ekolu, S.O. (2018), "Model for practical prediction of natural carbonation in reinforced concrete: Part 1 formulation", Cement Concrete Compos., 86(20), 40-56. https://doi.org/10.1016/j.cemconcomp.2017.10.006.
  11. Fib Bulletin 65. Model Code 2010 (2010), International Federation for Structural Concrete.
  12. Gopal, R. and Sangoju, B. (2019), "Carbonation-induced corrosion: A brief review on prediction models", J. Inst. Eng. (India): A, 101, 247-257. https://doi.org/10.1007/s40030-020-00434-8.
  13. Greve-Dierfeld, V.S. and Gehlen, C. (2014), "Performance-based deemed-to-satisfy rules", The Fourth International Fib Congress, Mumbai, India, February.
  14. Hakkinen, T. (1991), "Influence of high slag cement on the basic mechanical properties and carbonation of concrete", Nordic Concrete Research Meeting, Gothenburg, Sweden, August.
  15. Kokoubu, M. and Nagataki, S. (1989), "Carbonation of concrete with fly ash and corrosion of reinforcement in 20 years field test in cc fly ash, silica fume slag and natural pozzolans in concrete", Spec. Publ., 114, 315-330.
  16. Lagerblad, B. (2005), "Carbon dioxide uptake during concrete life cycle state of the art", SE-100 44; Swedish Cement and Concrete Research Institute.
  17. Lahdensivu, J., Lahdensivu, E. and Olio, A. (2019), "Case study on the 20 years' propagation of carbonation in existing concrete facade and balconies", Nordic Concrete Res., 60(1), 1-12. https://doi.org/10.2478/ncr-2019-0004.
  18. Liang, M.T., Qu, W. and Liang, C.H. (2002), "Mathematical modeling and prediction method of concrete carbonation and its applications", J. Mar. Sci. Technol., 10(2), 128-135. https://doi.org/10.51400/2709-6998.2311
  19. Loo, Y.H., Chin, M.S., Tam, C.T. and Ong, K.C.G. (1994), "A carbonation prediction model for accelerated carbonation testing of concrete", Mag. Concrete Res., 46(168), 191-200. https://doi.org/10.1680/macr.1994.46.168.191
  20. Papadakis, V.G., Vayenas, C.G. and Fardis, H. (1991), "Physical and chemical characteristics affecting the durability of concrete", ACI Mater., 9(4), 186-196.
  21. Parrot, P.J. (1994), "Design for avoiding damage due to carbonation induced corrosion", Spec. Publ., 145, 283-298.
  22. Parrott, L.J. (1987), A review of carbonation in reinforced concrete, Cement and Concrete Association, Buckinghamshire, England.
  23. Salvoldi, B.G., Beusahen, H. and Alexander, M.G. (2015), "Oxygen permeability of concrete and its relation to carbonation", Constr. Build. Mater., 85, 30-37. https://doi.org/10.1016/j.conbuildmat.2015.02.019.
  24. Syed, S., Rizui., Akthar S. and Varma, S.K. (2017), "Carbonation induced deterioration of concrete structures", Indian Concrete J., 2017, 65-70. https://doi.org/10.12989/SCS.2017.24.1.065
  25. Torrent, R. and Fernandez Luco, L. (2007), "Non-destructive evaluation of the covercrete", State of the art report (STAR): RILEM TC189-NEC; RILEM Technical Committee, Zurich, Switzerland.
  26. Umoto, T. and Takada, Y. (1993), "Factors affecting concrete carbonation rate", Durab. Build. Mater. Compon., 6, 1133-1141.
  27. University of Cape Town (2017), Durability Index Testing Procedure Manual, Ver.4.2, South Africa.