References
- Ahmadi, H., Bayat, A. and Duc, N.D. (2021), "Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method", Compos. Struct., 256, 113090. https://doi.org/10.1016/j.compstruct.2020.113090.
- Akbari, M., Kiani, Y. and Eslami, M.R. (2015), "Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports", Acta. Mech., 226(3), 897-915. https://doi.org/10.1007/s00707-014-1168-3.
- Allahkarami, F. and Tohidi, H. (2022), "Axisymmetric postbuckling of functionally graded graphene platelets reinforced composite annular plate on nonlinear elastic medium in thermal environment", Int. J. Struct. Stab. Dy., 2350034. https://doi.org/10.1142/S0219455423500347.
- Alazwari, M.A., Daikh, A.A., Houari, M.S., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel. Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
- Aris, H. and Ahmadi, H. (2022), "Combination resonance analysis of imperfect functionally graded conical shell resting on nonlinear viscoelastic foundation in thermal environment under multi-excitation", J. Vib. Control., 28(15-16), 2121-2144. https://doi.org/10.1177/10775463211006527.
- Asadi, H., Kiani, Y., Aghdam, M.M. and Shakeri, M. (2016), "Enhanced thermal buckling of laminated composite cylindrical shells with shape memory alloy", J. Compos. Mater., 50(2), 243-256. https://doi.org/10.1177/0021998315573287.
- Assie, A.E., Mohamed, S.A., Shanab, R.A., Abo-bakr, R.M. and Eltaher, M.A. (2023), "Static buckling of 2D FG porous plates resting on elastic foundation based on unified shear theories", J. Appl. Comput. Mech., 9(1), 239-258. https://doi.org/10.22055/jacm.2022.41265.3723.
- Babaei, H. (2021), "On frequency response of FG-CNT reinforced composite pipes in thermally pre/post buckled configurations", Compos. Struct., 276, 114467. https://doi.org/10.1016/j.compstruct.2021.114467.
- Babaei, H. (2022a), "Nonlinear analysis of size‑dependent frequencies in porous FG curved nanotubes based on nonlocal strain gradient theory", Eng. Struct., 38(3), 1717-1734. https://doi.org/10.1007/s00366-021-01317-7.
- Babaei, H. (2022b), "Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation", Appl. Math. Comput., 413, 126606. https://doi.org/10.1016/j.amc.2021.126606.
- Bagherizadeh, E., Kiani, Y. and Eslami, M.R. (2012), "Thermal buckling of functionally graded material cylindrical shells on elastic foundation", Aiaa. J., 50(2), 500-503. https://doi.org/10.2514/1.J051120.
- Basha, M., Daikh, A.A., Melaibari, A., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates", Steel. Compos. Struct., 43(5), 639-660. https://doi.org/10.12989/scs.2022.43.5.639.
- Boroujerdy, M.S., Naj, R. and Kiani, Y. (2014), "Buckling of heated temperature dependent fgm cylindrical shell surrounded by elastic medium", J. Theor. App. Mech-Pol., 52(4), 869-881.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022a), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus., 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022b), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel. Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
- Dinis, P.B., Santana, K.G., Landesmann, A. and Camotim, D. (2021), "Numerical and experimental study on CFS spherically-hinged equal-leg angle columns: stability, strength and DSM design", Thin. Wall. Struct., 161, 106862. https://doi.org/10.1016/j.tws.2020.106862.
- Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.
- Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137,1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
- Ebrahimi, F., Nouraei, M. and Dabbagh, A. (2020), "Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment", Mech. Based. Des. Struc., 48(2), 217-240. https://doi.org/10.1080/15397734.2019.1660185.
- Eltaher, M. A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019a), "Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations", Appl. Math. Model., 75, 414-445. https://doi.org/10.1016/j.apm.2019.05.026.
- Eltaher, M.A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019b), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136.
- Gholami, R. and Ansari, R. (2019), "Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates", Appl. Math. Model., 65, 627-660. https://doi.org/10.1016/j.apm.2018.08.038.
- Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
- Hendi, A., Eltaher, M.A, Mohamed, S.A. and Attia, M. (2022), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. http://doi.org/DOI10.12989/scs.2021.41.6.787.
- Ismail, M.S., Ifayefunmi, O., Fadzullah, S.H.S.M. and Johar, M. (2020), "Buckling of imperfect cone-cylinder transition subjected to external pressure", Int. J. Pres. Ves. Pip., 187, 104173. https://doi.org/10.1016/j.ijpvp.2020.104173.
- Javani, M., Kiani, Y. and Eslami, M.R. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin. Wall. Struct., 148, 106589. https://doi.org/10.1016/j.tws.2019.106589.
- Kiani, Y. (2020), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses., 43(1), 90-108. https://doi.org/10.1080/01495739.2019.1673687.
- Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2019), "A numerical method for magneto-hygrothermal post-buckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. Appl., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.
- Krasovsky, V. and Evkin, A. (2021), "Experimental investigation of buckling of dented cylindrical shells under axial compression", Thin. Wall. Struct., 164, 107869. https://doi.org/10.1016/j.tws.2021.107869.
- Khaniki, H.B., Ghayesh, M.H., Hussain, S. and Amabili, M. (2022), "Porosity, mass and geometrical imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions", Eng. Comput-Germany., 38(3), 2313-2339. https://doi.org/10.1007/s00366-020-01208-3.
- Kolakowski, Z., Kubiak, T., Zaczynska, M. and Kazmierczyk, F. (2020), "Global-distortional buckling mode influence on postbuckling behaviour of lip-channel beams", Int. J. Mech. Sci., 184, 105723. https://doi.org/10.1016/j.ijmecsci.2020.105723.
- Liu, Y.F., Hu, W.Y., Zhu, R., Safaei, B., Qin, Z.Y. and Chu, F.L. (2022), "Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact", Aerosp. Sci. Technol., 121, 107321.https://doi.org/10.1016/j.ast.2021.107321.
- Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.
- Ma, Y., Martinez-Vazquez, P. and Baniotopoulos, C. (2020), "Buckling analysis for wind turbine tower design: Thrust load versus compression load based on energy method", Energies, 13(20), 5302. https://doi.org/10.3390/en13205302.
- Malikan, M., Tornabene, F. and Dimitri, R. (2019), "Transient response of oscillated carbon nanotubes with an internal and external damping", Compos. Part B: Eng., 158, 198-205. https://doi.org/10.1016/j.compositesb.2018.09.092.
- Malikan, M., Wiczenbach, T. and Eremeyev, V.A. (2022), "Thermal buckling of functionally graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect", Continuum Mech. Thermodynam., 34(4), 1051-1066. https://doi.org/10.1007/s00161-021-01038-8.
- Mahani, R.B., Eyvazian, A., Musharavati, F., Sebaey, T.A. and Talebizadehsardari, P. (2020), "Thermal buckling of laminated Nano-Composite conical shell reinforced with graphene platelets", Thin. Wall. Struct., 155, 106913. https://doi.org/10.1016/j.tws.2020.106913.
- Martins, A.D., Goncalves, R. and Camotim, D. (2021), "Post-buckling behaviour of thin-walled regular polygonal tubes subjected to bending", Thin. Wall. Struct., 166, 108106. https://doi.org/10.1016/j.tws.2021.108106.
- Martins, A.D. and Silvestre, N. (2020), "Modal analysis and imperfection sensitivity of the post-buckling behaviour of cylindrical steel panels under in-plane bending", Eng. Struct., 207, 110127. https://doi.org/10.1016/j.engstruct.2019.110127.
- Martins, A.D., Goncalves, R. and Camotima, D. (2019), "Postbuckling behaviour of thin-walled regular polygonal tubular columns undergoing local-distortional interaction", Thin. Wall. Struct., 138, 373-391. https://doi.org/10.1016/j.tws.2019.02.020.
- Melaibari, A., Mohamed, S.A., Assie, A.E., Shanab, R.A. and Eltaher, M.A. (2023), "Static response of 2D FG porous plates resting on elastic foundation using midplane and neutral surfaces with movable constraints", Mathematics, 10(24), 4784. https://doi.org/10.3390/math10244784.
- Ming, S.Z., Song, Z.B., Zhou, C.H., Li, T., Du, K.F., Xu, S.L. and Wang, B. (2021), "The energy absorption of long origami-ending tubes with geometrical imperfections", Thin. Wall. Struct., 161, 107415. https://doi.org/10.1016/j.tws.2020.107415.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel. Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
- Mohamed, N., Mohamed, S.A. and Eltaher, M. A. (2021), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. with Comput., 37(4), 2823-2836. http://dx.doi.org/10.1007/s00366-020-00976-2.
- Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
- Nguyen, T.P., Vu, M.D., Cao, V.D. and Vu, H.N. (2021), "Nonlinear torsional buckling of functionally graded graphene-reinforced composite (FG-GRC) laminated cylindrical shells stiffened by FGGRC laminated stiffeners in thermal environment", Polym. Compos., 42(6), 3051-3063. https://doi.org/10.1002/pc.26038.
- Phuong, N.T., Trung, N.T., Doan, C.V., Thang, N.D., Duc, V.M. and Nam, V.H. (2020), "Nonlinear thermomechanical buckling of FGGRC laminated cylindrical shells stiffened by FG-GRC stiffeners subjected to external pressure", Acta. Mech., 231(12), 5125-5144. https://doi.org/10.1007/s00707-020-02813-5.
- Phuong, N.T., Dong, D.T., Van Doan, C. and Nam, V.H. (2022), "Nonlinear buckling of higher-order shear deformable stiffened FGGRC laminated plates with nonlinear elastic foundation subjected to combined loads", Aerosp. Sci. Technol., 127, 107736. https://doi.org/10.1016/j.ast.2022.107736.
- Phuong, N.T., Nam, V.H., Trung, N.T., Duc, V.M., Loi, N.V., Thinh, N.D. and Tu, P.T. (2021), "Thermomechanical postbuckling of functionally graded graphene-reinforced composite laminated toroidal shell segments surrounded by Pasternak's elastic foundation", J. Thermoplast. Compos., 34(10), 1380-1407. https://doi.org/10.1177/0892705719870593.
- Quyen, N.V., Thanh, N.V., Quan, T.Q. and Duc, N.D. (2021), "Nonlinear forced vibration of sandwich cylindrical panel with negative Poisson's ratio auxetic honeycombs core and CNTRC face sheets", Thin. Wall. Struct., 162, 107571. https://doi.org/10.1016/j.tws.2021.107571.
- Ramezani, M., Rezaiee-Pajand, M. and Tornabene, F. (2022), "Nonlinear thermomechanical analysis of GPLRC cylindrical shells using HSDT enriched by quasi-3D ANS cover functions", Thin. Wall. Struct., 179, 109582. https://doi.org/10.1016/j.tws.2022.109582.
- Saiah, B., Bachene, M., Guemana, M., Chiker, Y. and Attaf, B. (2022), "On the free vibration behavior of nanocomposite laminated plates contained piece-wise functionally graded graphene-reinforced composite plies", Eng. Struct., 253, 113784. https://doi.org/10.1016/j.engstruct.2021.113784.
- Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082.
- Shahgholian, D., Safarpour, M., Rahimi, A.R. and Alibeigloo, A. (2020), "Buckling analyses of functionally graded graphene-reinforced porous cylindrical shell using the Rayleigh-Ritz method", Acta. Mech., 231(5), 1887-1902. https://doi.org/10.1007/s00707-020-02616-8.
- Shahgholian-Ghahfarokhi, D., Rahimi, G., Khodadadi, A., Salehipour, H. and Afrand, M. (2021), "Buckling analyses of FG porous nanocomposite cylindrical shells with graphene platelet reinforcement subjected to uniform external lateral pressure", Mech. Based. Des. Struc., 49(7), 1059-1079. https://doi.org/10.1080/15397734.2019.1704777.
- Salehi, M., Gholami, R. and Ansari, R. (2022), "Nonlinear resonance of functionally graded porous circular cylindrical shells reinforced by graphene platelet with initial imperfections using higher-order shear deformation theory", Int. J. Struct. Stab. Dy., 22(6), 2250075. https://doi.org/10.1142/S0219455422500754.
- Stawiarski, A., Chwal, M., Barski, M. and Muc, A. (2020), "The influence of the manufacturing constraints on the optimal design of laminated conical shells", Compos. Struct., 235, 111820. https://doi.org/10.1016/j.compstruct.2010.111820.
- She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1) , 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stresses., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sin., 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
- She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
- She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Shen, H.S. (2007), "Thermal postbuckling behavior of shear deformable FGM plates", Int. J. Mech. Sci., 49(4), 466-478.https://doi.org/10.1016/j.ijmecsci.2006.09.011.
- Trang, L.T.N. and Tung, H.V. (2022), "Thermally induced postbuckling of thin CNT-reinforced composite plates under nonuniform in-plane temperature distributions", J. Thermoplast. Compos., 35(12), 2331-2353. https://doi.org/10.1177/0892705720962172
- Torabi, J., Kiani, Y. and Eslami, M.R. (2013), "Linear thermal buckling analysis of truncated hybrid FGM conical shells", Compos. Part B-Eng., 50, 265-272. https://doi.org/10.1016/j.compositesb.2013.02.025.
- Van Doan, C., Hung, V.T., Phuong, N.T. and Nam, V.H. (2022), "Torsional buckling and postbuckling behavior of stiffened FG-GRCL toroidal shell segments surrounded by elastic foundation", Int. J. Comput. Mat. Sci., 2350001. https://doi.org/10.1142/S204768412350001X.
- Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
- Wang, Y., Xie, K., Fu, T. and Shi, C. (2019), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939.https://doi.org/10.1016/j.compstruct.2018.11.014.
- Wu, H.L., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Design, 132, 430441. https://doi.org/10.1016/j.matdes.2017.07.025.
- Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
- Yilmaz, H., Ozyurt, E., Onder, A. and Tomek, P. (2020), "Elastic limit load estimation including similarity approach for different end conditioned conical shells with high semi-vertex angle under axial compression", Thin. Wall. Struct., 149, 106543. https://doi.org/10.1016/j.tws.2019.106543.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stresses, 45(12), 1029-1042.https://doi.org/10.1080/01495739.2022.2125137.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1),133-141. https://doi.org/10.12989/scs.2023.46.1.133.
- Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
- Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos, Struct., 42(3) 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
- Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlinear Dynam., https://doi.org/10.1007/s11071-022-08186-9.
- Zhang, Y.W. and She, G.L. (2023b), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2023.2180556.
- Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
- Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://10.12989/anr.2022.13.5.465.
- Zmuda-Trzebiatowski, L. and Iwicki, P. (2021), "Impact of geometrical imperfections on estimation of buckling and limit loads in a silo segment using the vibration correlation technique", Materials, 14(3), 567. https://doi.org/10.3390/ma14030567.