DOI QR코드

DOI QR Code

Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection

  • Yi-Wen Zhang (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Gui-Lin She (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Lei-Lei Gan (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Yin-Ping Li (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2022.12.20
  • Accepted : 2023.02.20
  • Published : 2023.03.25

Abstract

Initial geometrical imperfection is an important factor affecting the structural characteristics of plate and shell structures. Studying the effect of geometrical imperfection on the structural characteristics of cylindrical shell is beneficial to explore the thermal post-buckling response characteristics of cylindrical shell. Therefore, we devote to investigating the thermal post-buckling behavior of graphene platelets reinforced mental foam (GPLRMF) cylindrical shells with geometrical imperfection. The properties of GPLRMF material with considering three types of graphene platelets (GPLs) distribution patterns are introduced firstly. Subsequently, based on Donnell nonlinear shell theory, the governing equations of cylindrical shell are derived according to Eulerian-Lagrange equations. Taking into account two different boundary conditions namely simply supported (S-S) and clamped supported (C-S), the Galerkin principle is used to solve the governing equations. Finally, the impact of initial geometrical imperfections, the GPLs distribution types, the porosity distribution types, the porosity coefficient as well as the GPLs mass fraction on the thermal post-buckling response of the cylindrical shells are analyzed.

Keywords

References

  1. Ahmadi, H., Bayat, A. and Duc, N.D. (2021), "Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method", Compos. Struct., 256, 113090. https://doi.org/10.1016/j.compstruct.2020.113090.
  2. Akbari, M., Kiani, Y. and Eslami, M.R. (2015), "Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports", Acta. Mech., 226(3), 897-915. https://doi.org/10.1007/s00707-014-1168-3.
  3. Allahkarami, F. and Tohidi, H. (2022), "Axisymmetric postbuckling of functionally graded graphene platelets reinforced composite annular plate on nonlinear elastic medium in thermal environment", Int. J. Struct. Stab. Dy., 2350034. https://doi.org/10.1142/S0219455423500347.
  4. Alazwari, M.A., Daikh, A.A., Houari, M.S., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel. Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
  5. Aris, H. and Ahmadi, H. (2022), "Combination resonance analysis of imperfect functionally graded conical shell resting on nonlinear viscoelastic foundation in thermal environment under multi-excitation", J. Vib. Control., 28(15-16), 2121-2144. https://doi.org/10.1177/10775463211006527.
  6. Asadi, H., Kiani, Y., Aghdam, M.M. and Shakeri, M. (2016), "Enhanced thermal buckling of laminated composite cylindrical shells with shape memory alloy", J. Compos. Mater., 50(2), 243-256. https://doi.org/10.1177/0021998315573287.
  7. Assie, A.E., Mohamed, S.A., Shanab, R.A., Abo-bakr, R.M. and Eltaher, M.A. (2023), "Static buckling of 2D FG porous plates resting on elastic foundation based on unified shear theories", J. Appl. Comput. Mech., 9(1), 239-258. https://doi.org/10.22055/jacm.2022.41265.3723.
  8. Babaei, H. (2021), "On frequency response of FG-CNT reinforced composite pipes in thermally pre/post buckled configurations", Compos. Struct., 276, 114467. https://doi.org/10.1016/j.compstruct.2021.114467.
  9. Babaei, H. (2022a), "Nonlinear analysis of size‑dependent frequencies in porous FG curved nanotubes based on nonlocal strain gradient theory", Eng. Struct., 38(3), 1717-1734. https://doi.org/10.1007/s00366-021-01317-7.
  10. Babaei, H. (2022b), "Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation", Appl. Math. Comput., 413, 126606. https://doi.org/10.1016/j.amc.2021.126606.
  11. Bagherizadeh, E., Kiani, Y. and Eslami, M.R. (2012), "Thermal buckling of functionally graded material cylindrical shells on elastic foundation", Aiaa. J., 50(2), 500-503. https://doi.org/10.2514/1.J051120.
  12. Basha, M., Daikh, A.A., Melaibari, A., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates", Steel. Compos. Struct., 43(5), 639-660. https://doi.org/10.12989/scs.2022.43.5.639.
  13. Boroujerdy, M.S., Naj, R. and Kiani, Y. (2014), "Buckling of heated temperature dependent fgm cylindrical shell surrounded by elastic medium", J. Theor. App. Mech-Pol., 52(4), 869-881.
  14. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022a), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus., 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
  15. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022b), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel. Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
  16. Dinis, P.B., Santana, K.G., Landesmann, A. and Camotim, D. (2021), "Numerical and experimental study on CFS spherically-hinged equal-leg angle columns: stability, strength and DSM design", Thin. Wall. Struct., 161, 106862. https://doi.org/10.1016/j.tws.2020.106862.
  17. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.
  18. Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137,1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
  19. Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
  20. Ebrahimi, F., Nouraei, M. and Dabbagh, A. (2020), "Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment", Mech. Based. Des. Struc., 48(2), 217-240. https://doi.org/10.1080/15397734.2019.1660185.
  21. Eltaher, M. A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019a), "Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations", Appl. Math. Model., 75, 414-445. https://doi.org/10.1016/j.apm.2019.05.026.
  22. Eltaher, M.A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019b), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136.
  23. Gholami, R. and Ansari, R. (2019), "Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates", Appl. Math. Model., 65, 627-660. https://doi.org/10.1016/j.apm.2018.08.038.
  24. Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
  25. Hendi, A., Eltaher, M.A, Mohamed, S.A. and Attia, M. (2022), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. http://doi.org/DOI10.12989/scs.2021.41.6.787.
  26. Ismail, M.S., Ifayefunmi, O., Fadzullah, S.H.S.M. and Johar, M. (2020), "Buckling of imperfect cone-cylinder transition subjected to external pressure", Int. J. Pres. Ves. Pip., 187, 104173. https://doi.org/10.1016/j.ijpvp.2020.104173.
  27. Javani, M., Kiani, Y. and Eslami, M.R. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin. Wall. Struct., 148, 106589. https://doi.org/10.1016/j.tws.2019.106589.
  28. Kiani, Y. (2020), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses., 43(1), 90-108. https://doi.org/10.1080/01495739.2019.1673687.
  29. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2019), "A numerical method for magneto-hygrothermal post-buckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. Appl., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.
  30. Krasovsky, V. and Evkin, A. (2021), "Experimental investigation of buckling of dented cylindrical shells under axial compression", Thin. Wall. Struct., 164, 107869. https://doi.org/10.1016/j.tws.2021.107869.
  31. Khaniki, H.B., Ghayesh, M.H., Hussain, S. and Amabili, M. (2022), "Porosity, mass and geometrical imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions", Eng. Comput-Germany., 38(3), 2313-2339. https://doi.org/10.1007/s00366-020-01208-3.
  32. Kolakowski, Z., Kubiak, T., Zaczynska, M. and Kazmierczyk, F. (2020), "Global-distortional buckling mode influence on postbuckling behaviour of lip-channel beams", Int. J. Mech. Sci., 184, 105723. https://doi.org/10.1016/j.ijmecsci.2020.105723.
  33. Liu, Y.F., Hu, W.Y., Zhu, R., Safaei, B., Qin, Z.Y. and Chu, F.L. (2022), "Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact", Aerosp. Sci. Technol., 121, 107321.https://doi.org/10.1016/j.ast.2021.107321.
  34. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.
  35. Ma, Y., Martinez-Vazquez, P. and Baniotopoulos, C. (2020), "Buckling analysis for wind turbine tower design: Thrust load versus compression load based on energy method", Energies, 13(20), 5302. https://doi.org/10.3390/en13205302.
  36. Malikan, M., Tornabene, F. and Dimitri, R. (2019), "Transient response of oscillated carbon nanotubes with an internal and external damping", Compos. Part B: Eng., 158, 198-205. https://doi.org/10.1016/j.compositesb.2018.09.092.
  37. Malikan, M., Wiczenbach, T. and Eremeyev, V.A. (2022), "Thermal buckling of functionally graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect", Continuum Mech. Thermodynam., 34(4), 1051-1066. https://doi.org/10.1007/s00161-021-01038-8.
  38. Mahani, R.B., Eyvazian, A., Musharavati, F., Sebaey, T.A. and Talebizadehsardari, P. (2020), "Thermal buckling of laminated Nano-Composite conical shell reinforced with graphene platelets", Thin. Wall. Struct., 155, 106913. https://doi.org/10.1016/j.tws.2020.106913.
  39. Martins, A.D., Goncalves, R. and Camotim, D. (2021), "Post-buckling behaviour of thin-walled regular polygonal tubes subjected to bending", Thin. Wall. Struct., 166, 108106. https://doi.org/10.1016/j.tws.2021.108106.
  40. Martins, A.D. and Silvestre, N. (2020), "Modal analysis and imperfection sensitivity of the post-buckling behaviour of cylindrical steel panels under in-plane bending", Eng. Struct., 207, 110127. https://doi.org/10.1016/j.engstruct.2019.110127.
  41. Martins, A.D., Goncalves, R. and Camotima, D. (2019), "Postbuckling behaviour of thin-walled regular polygonal tubular columns undergoing local-distortional interaction", Thin. Wall. Struct., 138, 373-391. https://doi.org/10.1016/j.tws.2019.02.020.
  42. Melaibari, A., Mohamed, S.A., Assie, A.E., Shanab, R.A. and Eltaher, M.A. (2023), "Static response of 2D FG porous plates resting on elastic foundation using midplane and neutral surfaces with movable constraints", Mathematics, 10(24), 4784. https://doi.org/10.3390/math10244784.
  43. Ming, S.Z., Song, Z.B., Zhou, C.H., Li, T., Du, K.F., Xu, S.L. and Wang, B. (2021), "The energy absorption of long origami-ending tubes with geometrical imperfections", Thin. Wall. Struct., 161, 107415. https://doi.org/10.1016/j.tws.2020.107415.
  44. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel. Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
  45. Mohamed, N., Mohamed, S.A. and Eltaher, M. A. (2021), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. with Comput., 37(4), 2823-2836. http://dx.doi.org/10.1007/s00366-020-00976-2.
  46. Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
  47. Nguyen, T.P., Vu, M.D., Cao, V.D. and Vu, H.N. (2021), "Nonlinear torsional buckling of functionally graded graphene-reinforced composite (FG-GRC) laminated cylindrical shells stiffened by FGGRC laminated stiffeners in thermal environment", Polym. Compos., 42(6), 3051-3063. https://doi.org/10.1002/pc.26038.
  48. Phuong, N.T., Trung, N.T., Doan, C.V., Thang, N.D., Duc, V.M. and Nam, V.H. (2020), "Nonlinear thermomechanical buckling of FGGRC laminated cylindrical shells stiffened by FG-GRC stiffeners subjected to external pressure", Acta. Mech., 231(12), 5125-5144. https://doi.org/10.1007/s00707-020-02813-5.
  49. Phuong, N.T., Dong, D.T., Van Doan, C. and Nam, V.H. (2022), "Nonlinear buckling of higher-order shear deformable stiffened FGGRC laminated plates with nonlinear elastic foundation subjected to combined loads", Aerosp. Sci. Technol., 127, 107736. https://doi.org/10.1016/j.ast.2022.107736.
  50. Phuong, N.T., Nam, V.H., Trung, N.T., Duc, V.M., Loi, N.V., Thinh, N.D. and Tu, P.T. (2021), "Thermomechanical postbuckling of functionally graded graphene-reinforced composite laminated toroidal shell segments surrounded by Pasternak's elastic foundation", J. Thermoplast. Compos., 34(10), 1380-1407. https://doi.org/10.1177/0892705719870593.
  51. Quyen, N.V., Thanh, N.V., Quan, T.Q. and Duc, N.D. (2021), "Nonlinear forced vibration of sandwich cylindrical panel with negative Poisson's ratio auxetic honeycombs core and CNTRC face sheets", Thin. Wall. Struct., 162, 107571. https://doi.org/10.1016/j.tws.2021.107571.
  52. Ramezani, M., Rezaiee-Pajand, M. and Tornabene, F. (2022), "Nonlinear thermomechanical analysis of GPLRC cylindrical shells using HSDT enriched by quasi-3D ANS cover functions", Thin. Wall. Struct., 179, 109582. https://doi.org/10.1016/j.tws.2022.109582.
  53. Saiah, B., Bachene, M., Guemana, M., Chiker, Y. and Attaf, B. (2022), "On the free vibration behavior of nanocomposite laminated plates contained piece-wise functionally graded graphene-reinforced composite plies", Eng. Struct., 253, 113784. https://doi.org/10.1016/j.engstruct.2021.113784.
  54. Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082.
  55. Shahgholian, D., Safarpour, M., Rahimi, A.R. and Alibeigloo, A. (2020), "Buckling analyses of functionally graded graphene-reinforced porous cylindrical shell using the Rayleigh-Ritz method", Acta. Mech., 231(5), 1887-1902. https://doi.org/10.1007/s00707-020-02616-8.
  56. Shahgholian-Ghahfarokhi, D., Rahimi, G., Khodadadi, A., Salehipour, H. and Afrand, M. (2021), "Buckling analyses of FG porous nanocomposite cylindrical shells with graphene platelet reinforcement subjected to uniform external lateral pressure", Mech. Based. Des. Struc., 49(7), 1059-1079. https://doi.org/10.1080/15397734.2019.1704777.
  57. Salehi, M., Gholami, R. and Ansari, R. (2022), "Nonlinear resonance of functionally graded porous circular cylindrical shells reinforced by graphene platelet with initial imperfections using higher-order shear deformation theory", Int. J. Struct. Stab. Dy., 22(6), 2250075. https://doi.org/10.1142/S0219455422500754.
  58. Stawiarski, A., Chwal, M., Barski, M. and Muc, A. (2020), "The influence of the manufacturing constraints on the optimal design of laminated conical shells", Compos. Struct., 235, 111820. https://doi.org/10.1016/j.compstruct.2010.111820.
  59. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1) , 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
  60. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stresses., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  61. She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sin., 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
  62. She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
  63. She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
  64. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  65. Shen, H.S. (2007), "Thermal postbuckling behavior of shear deformable FGM plates", Int. J. Mech. Sci., 49(4), 466-478.https://doi.org/10.1016/j.ijmecsci.2006.09.011.
  66. Trang, L.T.N. and Tung, H.V. (2022), "Thermally induced postbuckling of thin CNT-reinforced composite plates under nonuniform in-plane temperature distributions", J. Thermoplast. Compos., 35(12), 2331-2353. https://doi.org/10.1177/0892705720962172
  67. Torabi, J., Kiani, Y. and Eslami, M.R. (2013), "Linear thermal buckling analysis of truncated hybrid FGM conical shells", Compos. Part B-Eng., 50, 265-272. https://doi.org/10.1016/j.compositesb.2013.02.025.
  68. Van Doan, C., Hung, V.T., Phuong, N.T. and Nam, V.H. (2022), "Torsional buckling and postbuckling behavior of stiffened FG-GRCL toroidal shell segments surrounded by elastic foundation", Int. J. Comput. Mat. Sci., 2350001. https://doi.org/10.1142/S204768412350001X.
  69. Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
  70. Wang, Y., Xie, K., Fu, T. and Shi, C. (2019), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939.https://doi.org/10.1016/j.compstruct.2018.11.014.
  71. Wu, H.L., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Design, 132, 430441. https://doi.org/10.1016/j.matdes.2017.07.025.
  72. Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
  73. Yilmaz, H., Ozyurt, E., Onder, A. and Tomek, P. (2020), "Elastic limit load estimation including similarity approach for different end conditioned conical shells with high semi-vertex angle under axial compression", Thin. Wall. Struct., 149, 106543. https://doi.org/10.1016/j.tws.2019.106543.
  74. Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stresses, 45(12), 1029-1042.https://doi.org/10.1080/01495739.2022.2125137.
  75. Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1),133-141. https://doi.org/10.12989/scs.2023.46.1.133.
  76. Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
  77. Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos, Struct., 42(3) 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
  78. Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlinear Dynam., https://doi.org/10.1007/s11071-022-08186-9.
  79. Zhang, Y.W. and She, G.L. (2023b), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2023.2180556.
  80. Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
  81. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
  82. Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://10.12989/anr.2022.13.5.465.
  83. Zmuda-Trzebiatowski, L. and Iwicki, P. (2021), "Impact of geometrical imperfections on estimation of buckling and limit loads in a silo segment using the vibration correlation technique", Materials, 14(3), 567. https://doi.org/10.3390/ma14030567.