DOI QR코드

DOI QR Code

The new flat shell element DKMGQ-CR in linear and geometric nonlinear analysis

  • Zuohua Li (School of Civil and Environmental Engineering, Harbin Institute of Technology) ;
  • Jiafei Ning (School of Civil and Environmental Engineering, Harbin Institute of Technology) ;
  • Qingfei Shan (School of Civil and Environmental Engineering, Harbin Institute of Technology) ;
  • Hui Pan (School of Civil and Environmental Engineering, Harbin Institute of Technology) ;
  • Qitao Yang (School of Civil and Environmental Engineering, Harbin Institute of Technology) ;
  • Jun Teng (School of Civil and Environmental Engineering, Harbin Institute of Technology)
  • Received : 2022.08.02
  • Accepted : 2022.12.16
  • Published : 2023.03.25

Abstract

Geometric nonlinear performance simulation and analysis of complex modern buildings and industrial products require high-performance shell elements. Balancing multiple aspects of performance in the one geometric nonlinear analysis element remains challenging. We present a new shell element, flat shell DKMGQ-CR (Co-rotational Discrete Kirchhoff-Mindlin Generalized Conforming Quadrilateral), for linear and geometric nonlinear analysis of both thick and thin shells. The DKMGQ-CR shell element was developed by combining the advantages of high-performance membrane and plate elements in a unified coordinate system and introducing the co-rotational formulation to adapt to large deformation analysis. The effectiveness of linear and geometric nonlinear analysis by DKMGQ-CR is verified through the tests of several classical numerical benchmarks. The computational results show that the proposed new element adapts to mesh distortion and effectively alleviates shear and membrane locking problems in linear and geometric nonlinear analysis. Furthermore, the DKMGQ-CR demonstrates high performance in analyzing thick and thin shells. The proposed element DKMGQ-CR is expected to provide an accurate, efficient, and convenient tool for the geometric nonlinear analysis of shells.

Keywords

Acknowledgement

This research was funded by the National Natural Science Foundations of China (Grant No. 51921006 and 51978224), the National Major Scientific Research Instrument Development Program of China (Grant No. 51827811), the Natural Science Foundation of Guangdong Province (Grant No. 2022A1515010403), the Shenzhen Technology Innovation Program (Grant No. JCYJ20180508152238111 and JCYJ20200109112803851), and the Shenzhen Sustainable Development Project (Grant No. KCXFZ202002011010039 and KCXFZ20200121090659756).

References

  1. Arciniega, R.A. and Reddy, J.N. (2007a), "Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures", Comput. Method. Appl. Mech. Eng., 196(4-6), 1048-1073. https://doi.org/10.1016/j.cma.2006.08.014.
  2. Arciniega, R.A. and Reddy, J.N. (2007b), "Large deformation analysis of functionally graded shells", Int. J. Solid. Struct., 44(6), 2036-2052. https://doi.org/10.1016/j.ijsolstr.2006.08.035.
  3. Argyris, J. (1982), "An excursion into large rotations", Comput. Method. Appl. Mech. Eng., 32(1-3), 85-155. https://doi.org/10.1016/0045-7825(82)90069-x.
  4. Attia, S., Mohareb, M., Martens, M., Ghodsi, N.Y., Li, Y. and Adeeb, S. (2022), "Shell finite element formulation for geometrically nonlinear analysis of curved thin-walled pipes", Thin Wall. Struct., 173, 108971. https://doi.org/10.1016/j.tws.2022.108971.
  5. Bathe, K.J. and Dvorkin, E.N. (1985), "A 4-node plate bending element based on Mindlin reissner plate-theory and a mixed interpolation", Int. J. Numer. Method. Eng., 21(2), 367-383. https://doi.org/10.1002/nme.1620210213.
  6. Batoz, J.L., Bathe, K.Jur. and Ho, L.W. (1980), "A study of three-node triangular plate bending elements", Int. J. Numer. Method. Eng., 15(12), 1771-1812. https://doi.org/10.1002/nme.1620151205.
  7. Battini, J.M. and Pacoste, C. (2006), "On the choice of the linear element for corotational triangular shells", Comput. Method. Appl. Mech. Eng., 195(44), 6362-6377. https://doi.org/10.1016/j.cma.2006.01.007.
  8. Belytschko, T. and Leviathan, I. (1994), "Physical stabilization of the 4-node shell element with one-point quadrature", Comput. Method. Appl. Mech. Eng., 113(3-4), 321-350. https://doi.org/10.1016/0045-7825(94)90052-3.
  9. Bisegna, P., Caruso, G., Caselli, F. and Nodargi, N.A. (2017), "A corotational triangular facet shell element for geometrically nonlinear analysis of thin piezoactuated structures", Compos. Struct., 172, 267-281. https://doi.org/10.1016/j.compstruct.2017.03.074.
  10. Bucalem, M.L. and Bathe, K.J. (1993), "Higher-order MITC general shell elements", Int. J. Numer. Method. Eng., 36(21), 3729-3754. https://doi.org/10.1002/nme.1620362109.
  11. Cen, S., Long, Z. and Long, Y. (1999), "A Mindlin quadrilateral plate element with improved interpolation for the rotation and shear fields", Eng. Mech., 16(4), 1-15.
  12. Cen, S., Wu, C.J., Li, Z., Shang, Y. and Li, C. (2019), "Some advances in high-performance finite element methods", Eng. Comput., 36(8), 2811-2834. https://doi.org/10.1108/EC-10-2018-0479.
  13. Cho, H., Kim, H. and Shin, S. (2018), "Geometrically nonlinear dynamic formulation for three-dimensional co-rotational solid elements", Comput. Method. Appl. Mech. Eng., 328, 301-320. https://doi.org/10.1016/j.cma.2017.08.037.
  14. Choi, C.K. and Lee, T.Y. (2003), "Efficient remedy for membrane locking of 4-node flat shell elements by non-conforming modes", Comput. Method. Appl. Mech. Eng., 192(16), 1961-1971. https://doi.org/10.1016/S0045-7825(03)00203-2.
  15. Crisfield, M.A. (1984), "A quadratic Mindlin element using shear constraints", Comput. Struct., 18(5), 833-852. https://doi.org/10.1016/0045-7949(84)90030-0.
  16. Deng, L., Niu, M., Xue, J. and Chen, L. (2023), "An ALE formulation for the geometric nonlinear dynamic analysis of planar curved beams subjected to moving loads", Mech. Syst. Signal Pr., 184, 109670. https://doi.org/10.1016/j.ymssp.2022.109670.
  17. Deng, L., Zhang, Y. and Chen, L. (2022), "An arbitrary Lagrangian-Eulerian formulation of two-dimensional viscoelastic beams based on the consistent corotational method", J. Comput. Nonlinear Dyn., 17(7), 071001. https://doi.org/10.1115/1.4053992.
  18. Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general non-linear analysis", Eng. Comput., 1(1), 77-88. https://doi.org/10.1108/eb023562.
  19. Felippa, C.A. and Haugen, B. (2005), "A unified formulation of small-strain corotational finite elements: I. Theory", Comput. Method. Appl. Mech. Eng., 194(21-24), 2285-2335. https://doi.org/10.1016/j.cma.2004.07.035.
  20. Gao, X., Liu, Y. and Lv, J. (2016), "A new method applied to the quadrilateral membrane element with vertex rigid rotational freedom", Math. Probl. Eng., 2016(3), 1-13. https://doi.org/10.1155/2016/1045438.
  21. Gutierrez, R.M., Reddy, J.N. and Amabili, M. (2016), "A new twelve-parameter spectral/hp shell finite element for large deformation analysis of composite shells", Compos. Struct., 151, 183-196. https://doi.org/10.1016/j.compstruct.2016.02.068.
  22. Izzuddin, B.A. (2005), "An enhanced co-rotational approach for large displacement analysis of plates", Int. J. Numer. Method. Eng., 64(10), 1350-1374. https://doi.org/10.1002/nme.1415.
  23. Izzuddin, B.A. and Liang, Y. (2016), "Bisector and zero-macrospin co-rotational systems for shell elements", Int. J. Numer. Method. Eng., 105(4), 286-320. https://doi.org/10.1002/nme.4978.
  24. Jeyachandrabose, C., Kirkhope, J. and Babu, C.R. (1985), "An alternative explicit formulation for the DKT plate-bending element", Int. J. Numer. Method. Eng., 21(7), 1289-1293. https://doi.org/10.1002/nme.1620210709.
  25. Kan, Z., Dong, K., Chen, B., Peng, H. and Song, X. (2021), "The direct force correction based framework for general corotational analysis", Comput. Method. Appl. Mech. Eng., 385, 114018. https://doi.org/10.1016/j.cma.2021.114018.
  26. Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields - part II: An extended DKQ element for thick-plate bending analysis", Int. J. Numer. Method. Eng., 36(11), 1885-1908. https://doi.org/10.1002/nme.1620361107.
  27. Katili, I., Batoz, J.L., Maknun, I.J., Hamdouni, A. and Millet, O. (2015a), "The development of DKMQ plate bending element for thick to thin shell analysis based on the Naghdi/Reissner/Mindlin shell theory", Finite Elem. Anal. Des., 100, 12-27. https://doi.org/10.1016/j.finel.2015.02.005.
  28. Katili, I., Maknun, I.J., Hamdouni, A. and Millet, O. (2015b), "Application of DKMQ element for composite plate bending structures", Compos. Struct., 132, 166-174. https://doi.org/10.1016/j.compstruct.2015.04.051.
  29. Kim, K.D., Han, S.C. and Suthasupradit, S. (2007), "Geometrically non-linear analysis of laminated composite structures using a 4-node co-rotational shell element with enhanced strains", Int. J. Non-Linear Mech. 42(6), 864-881. https://doi.org/10.1016/j.ijnonlinmec.2007.03.011.
  30. Ko, Y., Lee, P.S. and Bathe, K.J. (2017a), "A new MITC4+ shell element", Comput. Struct., 182, 404-418. https://doi.org/10.1016/j.compstruc.2016.11.004.
  31. Ko, Y., Lee, P.S. and Bathe, K.J. (2017b), "The MITC4+shell element in geometric nonlinear analysis", Comput. Struct., 185, 1-14. https://doi.org/10.1016/j.compstruc.2017.01.015.
  32. Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005.
  33. Li, M. and Zhan, F. (2000), "The finite deformation theory for beam, plate and shell. Part IV. The Fe formulation of Mindlin plate and shell based on Green-Lagrangian strain", Comput. Method. Appl. Mech. Eng., 182(1-2), 187-203. https://doi.org/10.1016/s0045-7825(99)00092-4.
  34. Long, Y., Cen, S. and Long, Z. (2009), Advanced Finite Element Method in Structural Engineering, Tsinghua University Press, Springer Berlin, Heidelberg.
  35. Long, Y.Q. and Xin, K.G. (1989), "Generalized conforming element for bending and buckling analysis of plates", Finite Elem. Anal. Des., 5(1), 15-30. https://doi.org/10.1016/0168-874x(89)90003-6.
  36. Long, Y. and Xu, Y. (1994a), "Generalized conforming quadrilateral membrane element with vertex rigid rotational freedom", Comput. Struct., 52(4), 749-755. https://doi.org/10.1016/0045-7949(94)90356-5.
  37. Long, Y. and Xu, Y. (1994b), "Generalized conforming flat rectangular thin shell element", Chin. J. Comput. Mech. Appl. 11(2), 154-160.
  38. Lu, X., Tian, Y., Cen, S., Guan, H., Xie, L. and Wang, L. (2017), "A high-performance quadrilateral flat shell element for seismic collapse simulation of tall buildings and its implementation in OpenSees", J. Earthq. Eng., 22(9), 1662-1682. https://doi.org/10.1080/13632469.2017.1297269.
  39. Macneal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elem. Anal. Des., 1(1), 3-20. https://doi.org/10.1016/0168-874x(85)90003-4.
  40. Meek, J.L. and Ristic, S. (1997), "Large displacement analysis of thin plates and shells using a flat facet finite element formulation", Comput. Method. Appl. Mech. Eng., 145(3-4), 285-299. https://doi.org/10.1016/s0045-7825(96)01220-0.
  41. Mindlin, R.D. (1951), "Influence of Rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38. https://doi.org/10.1115/1.4010217.
  42. Moita, J.S., Araujo, A.L., Mota Soares, C.M., Mota Soares, C.A. and Herskovits, J. (2016), "Material and geometric nonlinear analysis of functionally graded plate-shell type structures", Appl. Compos. Mater., 23(4), 537-554. https://doi.org/10.1007/s10443-016-9473-8.
  43. Mororo, L.A.T., Melo, A.M.C., de Parente Junior, E., Lucena Neto, E. and Monteiro, F.A.C. (2020), "Corotational elements for thin-walled laminated composite beams with large 3D rotations", Thin Wall. Struct., 152, 106375. https://doi.org/10.1016/j.tws.2019.106375.
  44. Nour-Omid, B. and Rankin, C.C. (1991), "Finite rotation analysis and consistent linearization using projectors", Comput. Method. Appl. Mech. Eng., 93(3), 353-384. https://doi.org/10.1016/0045-7825(91)90248-5.
  45. Nwuzor, I.C., Atuanya, C.U. and Olisa, O. (2021), "Momordica angustisepala fibres and ant hill particles/polyester value-added hybrid composites for bumper application", World J. Eng., 18(1), 136-145. https://doi.org/10.1108/WJE-03-2020-0096.
  46. Pacoste, C. (1998), "Co-rotational flat facet triangular elements for shell instability analyses", Comput. Method. Appl. Mech. Eng. 156(1-4), 75-110. https://doi.org/10.1016/s0045-7825(98)80004-2.
  47. Rankin, C.C. and Brogan, F.A. (1986), "An element independent corotational procedure for the treatment of large rotations", J. Press. Vessel Technol. Trans. ASME, 108(2), 165-174. https://doi.org/10.1115/1.3264765.
  48. Rankin, C.C. and Nouromid, B. (1988), "The use of projectors to improve finite-element performance", Comput. Struct., 30(1-2), 257-267. https://doi.org/10.1016/0045-7949(88)90231-3.
  49. Razzaque, A. (1973), "Program for triangular bending elements with derivative smoothing", Int. J. Numer. Method. Eng., 6(3), 333-343. https://doi.org/10.1002/nme.1620060305.
  50. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12(2), 69-77. https://doi.org/10.1115/1.4009435.
  51. Sadeghi, K. and Nouban, F. (2019), "An algorithm for simulation of cyclic eccentrically-loaded RC columns using fixed rectangular finite elements discretization", Comput. Concrete, 23(1), 25-36. https://doi.org/10.12989/cac.2019.23.1.025.
  52. Schulz, M. and Filippou, F.C. (2001), "Non-linear spatial Timoshenko beam element with curvature interpolation", Int. J. Numer. Method. Eng., 50(4), 761-785. https://doi.org/10.1002/1097-0207(20010210)50:4%3C761::AID-NME50%3E3.0.CO;2-2.
  53. Soeb, M.R., Islam, A.B.M.S., Jumaat, M.Z., Huda, N. and Arzu, F. (2017), "Response of nonlinear offshore spar platform under wave and current", Ocean Eng., 144, 296-304. https://doi.org/10.1016/j.oceaneng.2017.07.042.
  54. Srinivas, S. and Rao, A.K. (1973), "Flexure of thick rectangular plates", J. Appl. Mech., 40(1), 298-299. https://doi.org/10.1115/1.3422947.
  55. Sze, K.Y., Liu, X.H. and Lo, S.H. (2004), "Popular benchmark problems for geometric nonlinear analysis of shells", Finite Elem. Anal. Des., 40(11), 1551-1569. https://doi.org/10.1016/j.finel.2003.11.001.
  56. Traff, E.A., Sigmund, O. and Aage, N. (2021), "Topology optimization of ultra high resolution shell structures", Thin Wall. Struct., 160, 107349. https://doi.org/10.1016/j.tws.2020.107349.
  57. Wang, L., Cen, S., Xie, L. and Lu, X. (2016), "Development of a shear wall model based on a new flat shell element for large deformation simulation and application in opensees", Eng. Mech., 33(3), 47-54. https://doi.org/10.6052/j.issn.1000-4750.2015.03.0173.
  58. Wang, L., Long, Y. and Long, Z. (2010), "Quadrilateral thin plate elements formulated by the area coordinate method and the shape function spectrum method", Eng. Mech., 27(8), 1-6.
  59. Wong, F.T., Richard, A. and Katili, I. (2017). "Development of the DKMQ element for buckling analysis of shear-deformable plate bending", Procedia Eng., 171, 805-812. https://doi.org/10.1016/j.proeng.2017.01.368.
  60. Xu, Y. and Long, Y. (1993). "Quadrilateral membrane element with vertex rotational freedom from generalized compatible condition", Eng. Mech., 10(3), 27-36.
  61. Yoon, K. and Lee, P.S. (2014). "Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors", Comput. Method. Appl. Mech. Eng., 281, 106-130. https://doi.org/10.1016/j.cma.2014.07.023.
  62. Zhang, Y.X., Bradford, M.A. and Gilbert, R.I. (2007). "A layered shear-flexural plate/shell element using Timoshenko beam functions for nonlinear analysis of reinforced concrete plates", Finite Elem. Anal. Des., 43(11-12), 888-900. https://doi.org/10.1016/j.finel.2007.05.002.