DOI QR코드

DOI QR Code

FRACTIONAL TRAPEZOID AND NEWTON TYPE INEQUALITIES FOR DIFFERENTIABLE S-CONVEX FUNCTIONS

  • Fatih Hezenci (Department of Mathematics, Faculty of Science and Arts, Duzce University) ;
  • Huseyin Budak (Department of Mathematics, Faculty of Science and Arts, Duzce University) ;
  • Muhammad Aamir Ali (Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University)
  • Received : 2022.10.26
  • Accepted : 2022.12.02
  • Published : 2023.03.25

Abstract

In the present paper, we prove that our main inequality reduces to some trapezoid and Newton type inequalities for differentiable s-convex functions. These inequalities are established by using the well-known Riemann-Liouville fractional integrals. With the help of special cases of our main results, we also present some new and previously obtained trapezoid and Newton type inequalities.

Keywords

References

  1. P. Agarwal, S. S. Dragomir, M. Jleli, and B. Samet, Advances in Mathematical Inequalities and Applications, Trends in Mathematics, Birkhauser, Singapore, 2018. 
  2. P. Agarwal, Some inequalities involving Hadamard-type k-fractional integral operators, Math. Methods Appl. Sci. 40 (2017), no. 1, 3882-3891.  https://doi.org/10.1002/mma.4270
  3. P. Agarwal, M. Jleli, and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl. 2017 (2017), Article Number 55. 
  4. M. A. Ali, N. Alp, H. Budak, and P. Agarwal, On some new trapezoidal inequalities for qκ2-quantum integrals via Green function, J. Anal. 30 (2022), 15-33.  https://doi.org/10.1007/s41478-021-00323-8
  5. M. Alomari and M. Darus, On co-ordinated s-convex functions, Inter. Math. Forum 3 (2008), no. 40, 1977-1989. 
  6. W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen, Pupl. Inst. Math. 23 (1978), 13-20. 
  7. H. Budak, F. Hezenci, and H. Kara, On parametrized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integral, Math. Methods Appl. Sci. 44 (2021), no. 17, 12522-12536.  https://doi.org/10.1002/mma.7558
  8. H. Budak, F. Hezenci, and H. Kara, On generalized Ostrowski, Simpson and trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals, Adv. Difference Equ. 2021 (2021), 1-32.  https://doi.org/10.1186/s13662-020-03162-2
  9. S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5, 91-95.  https://doi.org/10.1016/S0893-9659(98)00086-X
  10. S. S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math. 32 (1999), no. 4, 687-696.  https://doi.org/10.1515/dema-1999-0403
  11. S. Erden, S. Iftikhar, P. Kumam, and M. U. Awan, Some Newton's like inequalities with applications, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 114 (2020), no. 4, 1-13.  https://doi.org/10.1007/s13398-019-00732-2
  12. G. Farid and M. Usman, Ostrowski type k-fractional integral inequalities for MT-convex and h-convex functions, Nonlinear Funct. Anal. Appl. 22 (2017), 627-639. 
  13. S. Gao and W. Shi, On new inequalities of Newton's type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math. 74 (2012), no. 1, 33-41. 
  14. R. Gorenflo and F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Springer Verlag, Wien, 1997. 
  15. F. Hezenci, H. Budak, and H. Kara, New version of Fractional Simpson type inequalities for twice differentiable functions, Adv. Difference Equ. 2021 (2021), Articel Number 460. 
  16. F. Hezenci, H. Budak, and P. Kosem, On New version of Newton's inequalities for Riemann-Liouville fractional integrals, To appear in Rocky Mountain J.
  17. H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100-111.  https://doi.org/10.1007/BF01837981
  18. S. Iftikhar, P. Kumam, and S. Erden, Newton's-type integral inequalities via local fractional integrals, Fractals 28 (2020), no. 3, 2050037. 
  19. S. Iftikhar, S. Erden, P. Kumam, and M. U. Awan, Local fractional Newton's inequalities involving generalized harmonic convex functions, Adv. Difference Equ. 2020 (2020), no. 1, 1-14.  https://doi.org/10.1186/s13662-019-2438-0
  20. ˙I. ˙I,scan and S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput. 238 (2014), 237-244. 
  21. M. A. Khan, A. Iqbal, M. Suleman, and Y. M. Chu, Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl. 2018 (2018), 1-15.  https://doi.org/10.1186/s13660-017-1594-6
  22. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006. 
  23. U. S. Kirmaci, M. K. Bakula, M. Klaricic, M. E. Ozdemir, and J. Pecaric, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (2007), 26-35. 
  24. M. A. Noor, K. I. Noor, and S. Iftikhar, Some Newton's type inequalities for harmonic convex functions, J. Adv. Math. Stud. 9 (2016), no. 1, 7-16.  https://doi.org/10.2298/FIL1609435N
  25. M. A. Noor, K. I. Noor, and S. Iftikhar, Newton inequalities for p-harmonic convex functions, Honam Math. J. 40 (2018), no. 2, 239-250. 
  26. J. Park, On Some Integral Inequalities for Twice Differentiable Quasi-Convex and Convex Functions via Fractional Integrals, Appl. Math. Sci. 9 (2015), no. 62, 3057-3069.  https://doi.org/10.12988/ams.2015.53248
  27. J. E. Pecaric F. Proschan, abd Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992. 
  28. C. Peng, C. Zhou, and T. S. Du Riemann-Liouville fractional Simpson's inequalities through generalized (m, h1, h2)-preinvexity, Ital. J. Pure Appl. Math. 38 (2017), 345-367. 
  29. M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Ba,sak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. Dyn. Syst. 57 (2013), 2403-2407.  https://doi.org/10.1016/j.mcm.2011.12.048
  30. M. Z. Sarikaya and F. Ertugral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova Math. 47 (2020), 193-213. 
  31. T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, and H. Budak, Riemann-Liouville fractional Newton's type inequalities for differentiable convex functions, Fractal Fract. 6 (2022), no. 3, 175. 
  32. M. Tunc, On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat 27 (2013), 559-565.  https://doi.org/10.2298/FIL1304559T
  33. X. You, F. Hezenci, H. Budak, and H. Kara, New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, AIMS Mathematics 7 (2021), no. 3, 3959-3971.  https://doi.org/10.3934/math.2022218
  34. XX. You, M. A. Ali, H. Budak, P. Agarwal, and Y-M. Chu, Extensions of Hermite-Hadamard inequalities for harmonically convex functions via generalized fractional integrals, J. Inequal Appl, 2021 (2021), Articel Number 102. 
  35. D. Zhao, M. A. Ali, A. Kashuri, H. Budak, and M. Z. Sarikaya, Hermite-Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals, J. Inequal. Appl. 2020 (2020), 1-38. https://doi.org/10.1186/s13660-019-2265-6