References
- Abdeljaber, O., Avci, O. and Inman, D.J. (2016), "Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks", J. Sound Vib., 363, 33-53. https://doi.org/10.1016/j.jsv.2015.10.029.
- Abdelrahman, A.A., Abd-El-Mottaleb, H.E. and Eltaher, M.A. (2020), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765. http://doi.org/10.12989/sem.2020.76.6.765.
- Al-Furjan, M.S.H., Habibi, M., Shan, L. and Tounsi, A. (2021), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
- Barati, M.R. and Shahverdi, H. (2017), "An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position", Mech. Adv. Mater. Struct., 24(10), 840-853. https://doi.org/10.1080/15376494.2016.1196788.
- Barati, M.R. and Shahverdi, H. (2022), "Equivalent material properties of perforated metamaterials based on relative density concept", Steel Compos. Struct., 44(5), 685. https://doi.org/10.12989/scs.2022.44.5.671.
- Becker, W. (1998), "The in-plane stiffnesses of a honeycomb core including the thickness effect", Arch. Appl. Mech., 68(5), 334-341. https://doi.org/10.1007/s004190050169.
- Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation.", Comput. Concrete, 26(3), 213-226. http://doi.org/10.12989/cac.2020.26.3.213.
- Bryan, J., Lu, E., Davami, K., Cortes, J., Lin, C., Lilley, D.E. and Bargatin, I. (2016), Two-layer Plate Mechanical Metamaterials, Hilton Head Workshop.
- Cai, W. and Shalaev, V.M. (2010), Optical Metamaterials, Vol. 10, Springer, New York.
- Del Vescovo, D. and Giorgio, I. (2014), "Dynamic problems for metamaterials: Review of existing models and ideas for further research", Int. J. Eng. Sci., 80, 153-172. https://doi.org/10.1016/j.ijengsci.2014.02.022.
- Donaldson, L. (2013), "Metamaterials help thermal flow", Mater. Today, 6(16), 207. https://doi.org/10.1016/j.mattod.2013.06.015.
- Findeisen, C., Forest, S., Hohe, J. and Gumbsch, P. (2020), "Discrete and continuum modelling of size effects in architectured unstable metamaterials", Contin. Mech. Thermodyn., 32, 1629-1645. https://doi.org/10.1007/s00161-020-00870-8.
- Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids: Structures and Properties, 2nd Edition, Cambridge University Press, Cambridge, UK.
- Gibson, L.J., Ashby, M.F., Schajer, G.S. and Robertson, C.I. (1982), "The mechanics of two-dimensional cellular materials", Proc. Roy. Soc. London. A. Math. Phys. Sci., 382(1782), 25-42. https://doi.org/10.1098/rspa.1982.0087.
- Hohe, J. and Becker, W. (1999), "Effective elastic properties of triangular grid structures", Compos. Struct., 45(2), 131-145. https://doi.org/10.1016/S0263-8223(99)00016-1.
- Huang, H.H., Sun, C.T. and Huang, G.L. (2009), "On the negative effective mass density in acoustic metamaterials", Int. J. Eng. Sci., 47(4), 610-617. https://doi.org/10.1016/j.ijengsci.2008.12.007.
- Jiao, P. and Alavi, A.H. (2018), "Buckling analysis of graphene-reinforced mechanical metamaterial beams with periodic webbing patterns", Int. J. Eng. Sci., 131, 1-18. https://doi.org/10.1016/j.ijengsci.2018.06.005.
- Khan, M.K., Baig, T. and Mirza, S. (2012), "Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb", Mater. Sci. Eng.: A, 539, 135-142. https://doi.org/10.1016/j.msea.2012.01.070.
- Kim, B. and Christensen, R.M. (2000), "Basic two-dimensional core types for sandwich structures", Int. J. Mech. Sci., 42(4), 657-676. https://doi.org/10.1016/S0020-7403(99)00028-4.
- Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31(3), 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2.
- Li, H., Li, Z., Safaei, B., Rong, W., Wang, W., Qin, Z. and Xiong, J. (2021a), "Nonlinear vibration analysis of fiber metal laminated plates with multiple viscoelastic layers", Thin Wall. Struct., 168, 108297. https://doi.org/10.1016/j.tws.2021.108297.
- Li, H., Li, Z., Xiao, Z., Wang, X., Xiong, J., Zhou, J. and Guan, Z. (2021d), "Development of an integrated model for prediction of impact and vibration response of hybrid fiber metal laminates with a viscoelastic layer", Int. J. Mech. Sci., 197, 106298. https://doi.org/10.1016/j.ijmecsci.2021.106298.
- Li, H., Ren, X., Yu, C., Xiong, J., Wang, X. and Zhao, J. (2021c), "Investigation of vibro-acoustic characteristics of FRP plates with porous foam core", Int. J. Mech. Sci., 209, 106697. https://doi.org/10.1016/j.ijmecsci.2021.106697.
- Li, H., Wang, W., Wang, Q., Han, Q., Liu, J., Qin, Z. and Wang, X. (2022), "Static and dynamic performances of sandwich plates with magnetorheological elastomer core: Theoretical and experimental studies", J. Sandw. Struct. Mater., 24(3), 1556-1579. https://doi.org/10.1177/10996362211053620.
- Li, H., Wang, X., Hu, X., Xiong, J., Han, Q., Wang, X. and Guan, Z. (2021b), "Vibration and damping study of multifunctional grille composite sandwich plates with an IMAS design approach", Compos. Part B: Eng., 223, 109078. https://doi.org/10.1016/j.compositesb.2021.109078.
- Li, X. and Gao, H. (2016), "Mechanical metamaterials: Smaller and stronger", Nat. Mater., 15(4), 373-374. https://doi.org/10.1038/nmat4591.
- Li, Y., Zi, H., Wu, X. and Zhu, L. (2020), "Flexural wave propagation and vibration isolation characteristics of sandwich plate-type elastic metamaterials", J. Vib. Control, 27(13-14), 1443-1452. https://doi.org/10.1177/1077546320942689.
- Ma, G. and Sheng, P. (2016), "Acoustic metamaterials: From local resonances to broad horizons", Sci. Adv., 2(2), e1501595. https://doi.org/10.1126/sciadv.1501595.
- Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F. and Al-Zahrani, M.M. (2021), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel Compos. Struct., 39(5), 631-643. http://doi.org/10.12989/scs.2021.39.5.631.
- Mokhtari, A.A., Lu, Y., Zhou, Q., Amirkhizi, A.V. and Srivastava, A. (2020), "Scattering of in-plane elastic waves at metamaterial interfaces", Int. J. Eng. Sci., 150, 103278. https://doi.org/10.1016/j.ijengsci.2020.103278.
- Nouh, M., Aldraihem, O. and Baz, A. (2015), "Wave propagation in metamaterial plates with periodic local resonances", J. Sound Vib., 341, 53-73. https://doi.org/10.1016/j.jsv.2014.12.030.
- Pacchioni, G. (2016), "Mechanical metamaterials: The strength awakens", Nat. Rev. Mater., 1(3), 1-1. https://doi.org/10.1038/natrevmats.2016.12.
- Ptochos, E. and Labeas, G. (2012), "Elastic modulus and Poisson's ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods", J. Sandw. Struct. Mater., 14(5), 597-626. https://doi.org/10.1177/1099636212444285.
- Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
- Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.
- Singh, S.J. and Harsha, S.P. (2021), "Free vibration analysis of sandwich plate with honeycomb core and FGM face sheets", Adv. Syst. Eng., 905-917. https://doi.org/10.1007/978-981-15-8025-3_85.
- Sobhy, M. (2020), "Differential quadrature method for magneto-hygrothermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory", J. Sandw. Struct. Mater., 23(5), 1662-1700. https://doi.org/10.1177/1099636219900668.
- Soleimani-Javid, Z., Arshid, E., Khorasani, M., Amir, S. and Tounsi, A. (2021), "Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions", Adv. Nano Res., 10(5), 449-460. http://doi.org/10.12989/anr.2021.10.5.449.
- Surjadi, J.U., Gao, L., Du, H., Li, X., Xiong, X., Fang, N.X. and Lu, Y. (2019), "Mechanical metamaterials and their engineering applications", Adv. Eng. Mater., 21(3), 1800864. https://doi.org/10.1002/adem.201800864.
- Wadley, H.N. (2006), "Multifunctional periodic cellular metals", Philos. Trans. Roy. Soc. A: Math., Phys. Eng. Sci., 364(1838), 31-68. https://doi.org/10.1098/rsta.2005.1697.
- Wang, Y.J., Zhang, Z.J., Xue, X.M. and Zhang, L. (2019), "Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core", Thin Wall. Struct., 145, 106425. https://doi.org/10.1016/j.tws.2019.106425.
- Zhang, Q., Yang, X., Li, P., Huang, G., Feng, S., Shen, C. and Lu, T.J. (2015), "Bioinspired engineering of honeycomb structure-Using nature to inspire human innovation", Progr. Mater. Sci., 74, 332-400. https://doi.org/10.1016/j.pmatsci.2015.05.001.
- Zhang, Z.J., Han, B., Zhang, Q.C. and Jin, F. (2017). Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores", Compos. Struct., 171, 335-344. https://doi.org/10.1016/j.compstruct.2017.03.045.
- Zhao, J., Gao, Z., Li, H., Wong, P.K. and Xie, Z. (2022), "Semiactive control for the nonlinear vibration suppression of square-celled sandwich plate with multi-zone MRE filler core", Mech. Syst. Signal Pr., 172, 108953. https://doi.org/10.1016/j.ymssp.2022.108953.
- Zhu, R., Huang, H.H., Huang, G.L. and Sun, C.T. (2011), "Microstructure continuum modeling of an elastic metamaterial", Int. J. Eng. Sci., 49(12), 1477-1485. https://doi.org/10.1016/j.ijengsci.2011.04.005.
- Zhu, X., Zhang, J., Zhang, W. and Chen, J. (2019), "Vibration frequencies and energies of an auxetic honeycomb sandwich plate", Mech. Adv. Mater. Struct., 26(23), 1951-1957. https://doi.org/10.1080/15376494.2018.1455933.